78
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Nonlinear vibroacoustic response and sound transmission loss analysis of functionally graded doubly curved shallow shells

&
Received 30 Aug 2023, Accepted 03 Nov 2023, Published online: 24 Nov 2023

References

  • L.E. Kinsler, A.R. Frey, A.B. Coppens, and J.V. Sanders, Fundamentals of Acoustics, John Wiley & Sons, New York, 2000.
  • D.D. Reynolds, Engineering Principles of Acoustics: Noise and Vibration Control, Allyn and Bacon, Boston, 1981.
  • L. Cremer and M. Heckl, Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies, Springer Science & Business Media, Berlin, 2013.
  • M.P. Norton and D.G. Karczub, Fundamentals of Noise and Vibration Analysis for Engineers, Cambridge University Press, Cambridge, 2003.
  • L.H. Donnell, A new theory for the buckling of thin cylinders under axial compression and bending, 1934.
  • J. Ginsberg, Large amplitude forced vibrations of simply supported thin cylindrical shells, J. Appl. Mech., vol. 40, no. 2, pp. 471–477, 1973. DOI: 10.1115/1.3423008
  • J.L. Sanders, Jr, Nonlinear theories for thin shells, Quart. Appl. Math., vol. 21, no. 1, pp. 21–36, 1963. DOI: 10.1090/qam/147023.
  • W.T. Koiter, On the nonlinear theory of thin elastic shells, Proc. Koninkl. Ned. Akad. van Wetenschappen, Series B., vol. 69, pp. 1–54, 1966.
  • V.V. Novozhilov, Foundations of the Nonlinear Theory of Elasticity, Courier Corporation, Leningrad, 1999.
  • P. Jeyaraj, N. Ganesan, and C. Padmanabhan, Vibration and acoustic response of a composite plate with inherent material damping in a thermal environment, J. Sound Vib., vol. 320, no. 1–2, pp. 322–338, 2009. DOI: 10.1016/j.jsv.2008.08.013.
  • T. Hause and L. Librescu, Doubly curved anisotropic sandwich panels: modeling and free vibration, J. Aircraft., vol. 44, no. 4, pp. 1327–1336, 2007. DOI: 10.2514/1.26990.
  • L. Monterrubio, Free vibration of shallow shells using the Rayleigh—Ritz method and penalty parameters, Proc. Ins. Mech. Eng. C: J. Mech. Eng. Sci., vol. 223, no. 10, pp. 2263–2272, 2009. DOI: 10.1243/09544062JMES1442.
  • F. Tornabene, Free vibrations of anisotropic doubly curved shells and panels of revolution with a free-form meridian resting on Winkler–Pasternak elastic foundations, Compos. Struct., vol. 94, no. 1, pp. 186–206, 2011. DOI: 10.1016/j.compstruct.2011.07.002.
  • M.S. Qatu and E. Asadi, Vibration of doubly curved shallow shells with arbitrary boundaries, Appl. Acoust., vol. 73, no. 1, pp. 21–27, 2012. DOI: 10.1016/j.apacoust.2011.06.013.
  • Y. Mochida, S. Ilanko, M. Duke, and Y. Narita, Free vibration analysis of doubly curved shallow shells using the superposition-Galerkin method, J. Sound Vib., vol. 331, no. 6, pp. 1413–1425, 2012. DOI: 10.1016/j.jsv.2011.10.031.
  • E. Ghavanloo and S. Fazelzadeh, Free vibration analysis of orthotropic doubly curved shallow shells based on the gradient elasticity, Compos. B: Eng., vol. 45, no. 1, pp. 1448–1457, 2013. DOI: 10.1016/j.compositesb.2012.09.054.
  • S. Pradyumna and J. Bandyopadhyay, Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation, J. Sound Vib., vol. 318, no. 1–2, pp. 176–192, 2008. DOI: 10.1016/j.jsv.2008.03.056.
  • J. Wang, Y.Q. Wang, and Q. Chai, Free vibration analysis of a spinning functionally graded spherical–cylindrical–conical shell with general boundary conditions in a thermal environment, Thin. Walled Struct., vol. 180, pp. 109768, 2022. DOI: 10.1016/j.tws.2022.109768.
  • Y.Q. Wang, Y.H. Wan, and Y.F. Zhang, Vibrations of longitudinally traveling functionally graded material plates with porosities, European J. Mech.-A/Solids., vol. 66, pp. 55–68, 2017. DOI: 10.1016/j.euromechsol.2017.06.006.
  • H. Matsunaga, Free vibration and stability of functionally graded shallow shells according to a 2D higher-order deformation theory, Compos. Struct., vol. 84, no. 2, pp. 132–146, 2008. DOI: 10.1016/j.compstruct.2007.07.006.
  • M. Amabili and J. Reddy, A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells, Int. J. Non. Linear Mech., vol. 45, no. 4, pp. 409–418, 2010. DOI: 10.1016/j.ijnonlinmec.2009.12.013.
  • M.D. Demirbaş, R. Ekici, and M.K. Apalak, Thermoelastic analysis of temperature-dependent functionally graded rectangular plates using finite element and finite difference methods, Mech. Adv. Mater. Struct., vol. 27, no. 9, pp. 707–724, 2020. DOI: 10.1080/15376494.2018.1494871.
  • E. Carrera, S. Brischetto, M. Cinefra, and M. Soave, Refined and advanced models for multilayered plates and shells embedding functionally graded material layers, Mech. Adv. Mater. Struct., vol. 17, no. 8, pp. 603–621, 2010. DOI: 10.1080/15376494.2010.517730.
  • C. He, J. Zhu, Y. Hua, D. Xin, and H. Hua, A study on the vibration characteristics of functionally graded cylindrical beam in a thermal environment using the Carrera unified formulation, Mech. Adv. Mater. Struct., vol. 30, pp. 1–13, 2023. DOI: 10.1080/15376494.2023.2242861.
  • F. Rahmani, R. Kamgar, and R. Rahgozar, Analysis of metallic and functionally graded beams using isogeometric approach and Carrera unified formulation, Mech. Adv. Mater. Struct., vol. 30, no. 4, pp. 894–911, 2023. DOI: 10.1080/15376494.2022.2028042.
  • Y. Kiani, A.H. Akbarzadeh, Z.T. Chen, and M.R. Eslami, Static and dynamic analysis of an FGM doubly curved panel resting on the Pasternak-type elastic foundation, Compos. Struct., vol. 94, no. 8, pp. 2474–2484, 2012. DOI: 10.1016/j.compstruct.2012.02.028.
  • M. Fadaee, M.R. Ilkhani, and S. Hosseini-Hashemi, A new generic exact solution for free vibration of functionally graded moderately thick doubly curved shallow shell panel, J. Vib. Control., vol. 22, no. 15, pp. 3355–3367, 2016. DOI: 10.1177/1077546314551778.
  • L. Li, H. Li, F. Pang, X. Wang, Y. Du, and Sh Li, The modified Fourier-Ritz approach for the free vibration of functionally graded cylindrical, conical, spherical panels and shells of revolution with general boundary condition, Math. Prob. Eng., vol. 2017, pp. 1–32, 2017. DOI: 10.1155/2017/9183924.
  • Jiazhong Zhang, Dick H. van Campen, G.Q. Zhang, Vincent Bouwman, and Jan Willem ter Weeme, Dynamic stability of doubly curved orthotropic shallow shells under impact, AIAA J., vol. 39, no. 5, pp. 956–961, 2001. DOI: 10.2514/2.1401.
  • Nguyen Dinh Duc, Ngo Duc Tuan, Phuong Tran, and Tran Quoc Quan, Nonlinear dynamic response and vibration of imperfect shear deformable functionally graded plates subjected to blast and thermal loads, Mech. Adv. Mater. Struct., vol. 24, no. 4, pp. 318–329, 2017. DOI: 10.1080/15376494.2016.1142024.
  • M. Amabili, Non-linear vibrations of doubly curved shallow shells, Int. J. Non. Linear Mech., vol. 40, no. 5, pp. 683–710, 2005. DOI: 10.1016/j.ijnonlinmec.2004.08.007.
  • F. Alijani, M. Amabili, K. Karagiozis, and F. Bakhtiari-Nejad, Nonlinear vibrations of functionally graded doubly curved shallow shells, J. Sound Vib., vol. 330, no. 7, pp. 1432–1454, 2011. DOI: 10.1016/j.jsv.2010.10.003.
  • S. Chorfi and A. Houmat, Non-linear free vibration of a functionally graded doubly curved shallow shell of elliptical plan-form, Compos. Struct., vol. 92, no. 10, pp. 2573–2581, 2010. DOI: 10.1016/j.compstruct.2010.02.001.
  • N.D. Duc, Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation, Compos. Struct., vol. 99, pp. 88–96, 2013. DOI: 10.1016/j.compstruct.2012.11.017.
  • D.H. Bich, N.D. Duc, and T.Q. Quan, Nonlinear vibration of imperfect eccentrically stiffened functionally graded double curved shallow shells resting on elastic foundation using the first order shear deformation theory, Int. J. Mech. Sci., vol. 80, pp. 16–28, 2014.
  • N.D. Duc, K. Seung-Eock, P.H. Cong, N.T. Anh, and N.D. Khoa, Dynamic response and vibration of composite double curved shallow shells with negative Poisson’s ratio in auxetic honeycombs core layer on elastic foundations subjected to blast and damping loads, Int. J. Mech. Sci., vol. 133, pp. 504–512, 2017. DOI: 10.1016/j.ijmecsci.2017.09.009.
  • M. Amabili, Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, Cambridge, 2008.
  • M. Amabili, Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials, Cambridge University Press, Cambridge, 2018.
  • P. Smith Jr, Sound transmission through thin cylindrical shells, J. Acous. Soc. Am., vol. 29, no. 6, pp. 721–729, 1957. DOI: 10.1121/1.1909025.
  • J.-H. Lee and J. Kim, Study on sound transmission characteristics of a cylindrical shell using analytical and experimental models, Appl. Acoust., vol. 64, no. 6, pp. 611–632, 2003. DOI: 10.1016/S0003-682X(02)00138-X.
  • M.H. Shojaeifard, R. Talebitooti, R. Ahmadi, and M.R. Gheybi, Vibro-acoustic study on transverse-isotropic thick-walled cylindrical shells considering high shear deformation theory using Hamilton principle, Modares Mech. Eng., vol. 14, no. 4, pp. 147–157, 2014. (In Persian).
  • R. Talebitooti, M. Zarastvand, and M. Gheibi, Acoustic transmission through laminated composite cylindrical shell employing third order shear deformation theory in the presence of subsonic flow, Compos. Struct., vol. 157, pp. 95–110, 2016. DOI: 10.1016/j.compstruct.2016.08.008.
  • K. Daneshjou, R. Talebitooti, and A. Tarkashvand, Analysis of sound transmission loss through thick-walled cylindrical shell using three-dimensional elasticity theory, Int. J. Mech. Sci., vol. 106, pp. 286–296, 2016. DOI: 10.1016/j.ijmecsci.2015.12.019.
  • A.A. Jafari, M. Golzari, and M.S. Jafari, Sound transmission loss through triple-walled sandwich cylindrical shells in the presence of external flow, Modares Mech. Eng., vol. 17, no. 10, pp. 439–450, 2018.
  • R. Talebitooti, M. Zarastvand, and H. Gohari, Investigation of power transmission across laminated composite doubly curved shell in the presence of external flow considering shear deformation shallow shell theory, J. Vib. Control., vol. 24, no. 19, pp. 4492–4504, 2018. DOI: 10.1177/1077546317727655.
  • M. Ghassabi, R. Talebitooti, and M. Zarastvand, State vector computational technique for three-dimensional acoustic sound propagation through doubly curved thick structure, Comp. Methods Appl. Mech. Eng., vol. 352, pp. 324–344, 2019. DOI: 10.1016/j.cma.2019.04.011.
  • Jean-Michel Dhainaut, Xinyun Guo, Chuh Mei, S. Michael Spottswood, and Howard F. Wolfe, Nonlinear random response of panels in an elevated thermal-acoustic environment, J. Aircraft., vol. 40, no. 4, pp. 683–691, 2003. DOI: 10.2514/2.3146.
  • A. Tebyanian and M.R. Ghazavi, Vibro-acoustic and sound transmission loss analysis of truncated conical shell subjected to incident sound wave, J. Vib. Control., vol. 25, no. 2, pp. 435–444, 2019. DOI: 10.1177/1077546318783553.
  • H.R. Azarboni, R. Ansari, and A. Nazarinezhad, Chaotic dynamics and stability of functionally graded material doubly curved shallow shells, Chaos, Solitons Fractals., vol. 109, pp. 14–25, 2018. DOI: 10.1016/j.chaos.2018.02.011.
  • A.A. Jafari and M. Golzari, Sound transmission loss of truncated conical shells with porous materials, Amirkabir J. Mech. Eng., vol. 53, no. 2, pp. 923–942, 2021.
  • R. Talebitooti, R. Ahmadi, and M. Shojaeefard, Three-dimensional wave propagation on orthotropic cylindrical shells with arbitrary thickness considering state space method, Compos. Struct., vol. 132, pp. 239–254, 2015. DOI: 10.1016/j.compstruct.2015.05.023.
  • M. Amabili, F. Pellicano, and M. Paidoussis, Nonlinear vibrations of simply supported, circular cylindrical shells, coupled to quiescent fluid, J. Fluids Struct., vol. 12, no. 7, pp. 883–918, 1998. DOI: 10.1006/jfls.1998.0173.
  • A.H. Orafa, M.M. Jalili, and A.R. Fotuhi, Nonlinear vibro-acoustic behavior of cylindrical shell under primary resonances, Int. J. Non. Linear Mech., vol. 130, pp. 103682, 2021. DOI: 10.1016/j.ijnonlinmec.2021.103682.
  • Y.-N. Kim, J.-S. Park, E.-S. Go, M.-H. Jeon, and I.-G. Kim, Nonlinear random response analyses of panels considering transverse shear deformations under combined thermal and acoustic loads, Shock Vib., vol. 2018, pp. 1–11, 2018. DOI: 10.1155/2018/9751038.
  • M. Sheykhi, A. Eskandari, D. Ghafari, R. Ahmadi Arpanahi, B. Mohammadi, and Sh Hosseini Hashemi, Investigation of fluid viscosity and density on vibration of nano beam submerged in fluid considering nonlocal elasticity theory, Alex. Eng. J., vol. 65, pp. 607–614, 2023. DOI: 10.1016/j.aej.2022.10.016.
  • R.A. Arpanahi, A. Eskandari, S. Hosseini Hashemi, M. Taherkhani, and Sh Hosseini Hashemi, Surface energy effect on free vibration characteristics of nano-plate submerged in viscous fluid, J. Vib. Eng. Technol., vol. 11, pp. 1–10, 2023. DOI: 10.1007/s42417-022-00828-x.
  • R.A. Arpanahi, B. Mohammadi, M.T. Ahmadian, and Sh Hosseini Hashemi, Study on the buckling behavior of nonlocal nanoplate submerged in viscous moving fluid, Int. J. Dynam. Control., vol. 11, no. 6, pp. 2820–2830, 2023. DOI: 10.1007/s40435-023-01166-w.
  • Q. Chai and Y.Q. Wang, Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion, Eng. Struct., vol. 252, pp. 113718, 2022. DOI: 10.1016/j.engstruct.2021.113718.
  • T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., vol. 21, no. 5, pp. 571–574, 1973. DOI: 10.1016/0001-6160(73)90064-3.
  • J.R. Zuiker, Functionally graded materials: choice of micromechanics model and limitations in property variation, Compos. Eng., vol. 5, no. 7, pp. 807–819, 1995. DOI: 10.1016/0961-9526(95)00031-H.
  • N. Chandra, S. Raja, and K. Gopal, A comprehensive analysis on the structural–acoustic aspects of various functionally graded plates, Int. J. Appl. Mech., vol. 07, no. 05, pp. 1550072, 2015. DOI: 10.1142/S1758825115500726.
  • N. Chandra, S. Raja, and K.N. Gopal, Vibro-acoustic response and sound transmission loss analysis of functionally graded plates, J. Sound Vib., vol. 333, no. 22, pp. 5786–5802, 2014. DOI: 10.1016/j.jsv.2014.06.031.
  • T. Yang and Q. Huang, Vibro-acoustic response of FGM plates considering the thermal effects, 2016 3rd International Conference on Materials Engineering, Manufacturing Technology and Control, Atlantis Press, 2016. DOI: 10.2991/icmemtc-16.2016.206.
  • Touloukian, Y. S., Thermophysical Properties of High Temperature Solid Materials, vol. 3, Macmillan, New York, 1967.
  • Y. Wang, C. Ye, and J. Zu, Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities, Appl. Math. Mech.-Engl. Ed., vol. 39, no. 11, pp. 1587–1604, 2018. DOI: 10.1007/s10483-018-2388-6.
  • S.J. Singh and S.P. Harsha, Static analysis of functionally graded plate using nonlinear classical plate theory with von Karman strains: a complex solution analysis. In: Advances in Engineering Design: Select Proceedings of FLAME 2018, Springer, Singapore, 2019.
  • A. Abe, Y. Kobayashi, and G. Yamada, One-to-one internal resonance of symmetric crossply laminated shallow shells, J. Appl. Mech., vol. 68, no. 4, pp. 640–649, 2001. DOI: 10.1115/1.1356416.
  • D.A. Evensen, Nonlinear flexural vibrations of thin-walled circular cylinders. National Aeronautics and Space Administration, 1967.
  • E. Dowell and C. Ventres, Modal equations for the nonlinear flexural vibrations of a cylindrical shell, Int. J. Solids Struct., vol. 4, no. 10, pp. 975–991, 1968. DOI: 10.1016/0020-7683(68)90017-6.
  • S. Atluri, A perturbation analysis of non-linear free flexural vibrations of a circular cylindrical shell, Int. J. Solids Struct., vol. 8, no. 4, pp. 549–569, 1972. DOI: 10.1016/0020-7683(72)90022-4.
  • K. Zhukovsky, A method of inverse differential operators using ortogonal polynomials and special functions for solving some types of differential equations and physical problems, Moscow Univ. Phys., vol. 70, no. 2, pp. 93–100, 2015. DOI: 10.3103/S0027134915020137.
  • R.N. Miles, Physical Approach to Engineering Acoustics, Springer, Switzerland, 2020.
  • A.H. Nayfeh and D.T. Mook, Nonlinear Oscillations, John Wiley & Sons, New York, 2008.
  • H.-S. Shen, Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press, 2016.
  • J. Reddy and C. Chin, Thermomechanical analysis of functionally graded cylinders and plates, J. Therm. Stresses., vol. 21, no. 6, pp. 593–626, 1998. DOI: 10.1080/01495739808956165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.