121
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Phase-field simulation of fracture in Polymethyl Methacrylate

, , ORCID Icon, &
Received 25 Sep 2023, Accepted 15 Nov 2023, Published online: 27 Nov 2023

References

  • A.A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 221, no. 582–593, pp. 163–198, Jan. 1921.
  • A.R. Ingraffea, and V. Saouma, Numerical modeling of discrete crack propagation in reinforced and plain concrete. In: G.C. Sih, and A. DiTommaso (eds.), Fracture mechanics of concrete: Structural application and numerical calculation. Engineering Application of Fracture Mechanics, vol. 4, Springer, Dordrecht. 1985. DOI: 10.1007/978-94-009-6152-4_4.
  • S. Soghrati, F. Xiao, and A. Nagarajan, A conforming to interface structured adaptive mesh refinement technique for modeling fracture problems, Comput. Mech., vol. 59, no. 4, pp. 667–684, Apr. 2017. DOI: 10.1007/s00466-016-1366-z.
  • J. Dolbow, N. Moës, and T. Belytschko, Discontinuous enrichment in finite elements with a partition of unity method, Finite Elem. Anal. Des., vol. 36, no. 3–4, pp. 235–260, Nov. 2000. DOI: 10.1016/S0168-874X(00)00035-4.
  • N. Moës, C. Stolz, P.-E. Bernard, and N. Chevaugeon, A level set based model for damage growth: the thick level set approach, Numer. Meth Eng., vol. 86, no. 3, pp. 358–380, Apr. 2011. DOI: 10.1002/nme.3069.
  • G.L. Peng, and Y.H. Wang, A node split method for crack growth problem, Appl. Mech. Mater., vol. 182–183, pp. 1524–1528, Jun. 2012. DOI: 10.4028/www.scientific.net/AMM.182-183.1524.
  • M. Elices, G.V. Guinea, J. Gómez, and J. Planas, The cohesive zone model: advantages, limitations and challenges, Eng. Fract. Mech., vol. 69, no. 2, pp. 137–163, Jan. 2002. DOI: 10.1016/S0013-7944(01)00083-2.
  • A. Portela, M.H. Aliabadi, and D.P. Rooke, Dual boundary element incremental analysis of crack propagation, Comput. Struct., vol. 46, no. 2, pp. 237–247, Jan. 1993. DOI: 10.1016/0045-7949(93)90189-K.
  • T. Rabczuk, and H. Ren, A peridynamics formulation for quasi-static fracture and contact in rock, Eng. Geol., vol. 225, pp. 42–48, Jul. 2017. DOI: 10.1016/j.enggeo.2017.05.001.
  • T. Belytschko, Y.Y. Lu, and L. Gu, Crack propagation by element-free Galerkin methods, Eng. Fract. Mech., vol. 51, no. 2, pp. 295–315, May 1995. DOI: 10.1016/0013-7944(94)00153-9.
  • K. Seleš, T. Lesičar, Z. Tonković, and J. Sorić, A residual control staggered solution scheme for the phase-field modeling of brittle fracture, Eng. Fract. Mech., vol. 205, pp. 370–386, Jan. 2019. DOI: 10.1016/j.engfracmech.2018.09.027.
  • G.A. Francfort, and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids., vol. 46, no. 8, pp. 1319–1342, Aug. 1998. DOI: 10.1016/S0022-5096(98)00034-9.
  • B. Bourdin, G.A. Francfort, and J.-J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids., vol. 48, no. 4, pp. 797–826, Apr. 2000. DOI: 10.1016/S0022-5096(99)00028-9.
  • M.J. Borden, T.J.R. Hughes, C.M. Landis, I.J. Lee, C. Methods, and A. Mech, A phase-field formulation for fracture in ductile materials : Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput. Methods Appl. Mech. Eng., vol. 312, pp. 130–166, 2016.
  • S. Nagaraja, M. Elhaddad, M. Ambati, S. Kollmannsberger, L. De Lorenzis, and E. Rank, Phase-field modeling of brittle fracture with multi-level hp-FEM and the finite cell method, Comput Mech., vol. 63, no. 6, pp. 1283–1300, Oct. 2018. DOI: 10.1007/s00466-018-1649-7.
  • T. Heister, M.F. Wheeler, and T. Wick, A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Comput. Methods Appl. Mech. Eng., vol. 290, pp. 466–495, Jun. 2015. DOI: 10.1016/j.cma.2015.03.009.
  • M. Ambati, T. Gerasimov, and L. De Lorenzis, A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput Mech., vol. 55, no. 2, pp. 383–405, 2015. DOI: 10.1007/s00466-014-1109-y.
  • J. Reinoso, M. Paggi, and C. Linder, Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation, Comput Mech., vol. 59, no. 6, pp. 981–1001, Jun. 2017. DOI: 10.1007/s00466-017-1386-3.
  • R. Brighenti, T. Rabczuk, and X. Zhuang, Phase field approach for simulating failure of viscoelastic elastomers, Eur. J. Mech. - A/Solids, vol. 85, p. 104092, 2021. DOI: 10.1016/j.euromechsol.2020.104092.
  • R. Alessi, S. Vidoli, and L. De Lorenzis, A phenomenological approach to fatigue with a variational phase-field model: the one-dimensional case, Eng. Fract. Mech., vol. 190, pp. 53–73, Mar. 2018. DOI: 10.1016/j.engfracmech.2017.11.036.
  • P. Chakraborty, Y. Zhang, and M.R. Tonks, Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method, Comput. Mater. Sci., vol. 113, pp. 38–52, Feb. 2016. DOI: 10.1016/j.commatsci.2015.11.010.
  • L. Schänzel, M. Hofacker, and C. Miehe, Phase field modeling of crack propagation at large strains with application to rubbery polymers, Proc. Appl. Math. Mech., vol. 11, no. 1, pp. 429–430, 2011. DOI: 10.1002/pamm.201110206.
  • K. Sarah, P. Thamburaja, A. Srinivasa, and J.N. Reddy, Numerical simulations of damage and fracture in viscoelastic solids using a nonlocal fracture criterion, Mech. Adv. Mater. Struct., vol. 27, no. 13, pp. 1085–1097, Jul. 2020. DOI: 10.1080/15376494.2020.1716414.
  • C. Zhou, M. Hu, D. Xie, Y. Wang, and J. He, Finite element-based phase field simulation of complex branching crack propagation under different loads, Mech. Adv. Mater. Struct., pp. 1–11, Mar. 2023. DOI: 10.1080/15376494.2023.2193184.
  • J. Vignollet, S. May, R. de Borst, and C.V. Verhoosel, Phase-field models for brittle and cohesive fracture, Meccanica, vol. 49, no. 11, pp. 2587–2601, Nov. 2014. DOI: 10.1007/s11012-013-9862-0.
  • C.V. Verhoosel, J.J.C. Remmers, and M.A. Gutiérrez, A dissipation-based arc-length method for robust simulation of brittle and ductile failure, Numer. Methods Eng., vol. 77, no. 9, pp. 1290–1321, Feb. 2009. DOI: 10.1002/nme.2447.
  • T. Wick, Modified Newton methods for solving fully monolithic phase-field quasi-static brittle fracture propagation, Comput. Methods Appl. Mech. Eng., vol. 325, pp. 577–611, Oct. 2017. DOI: 10.1016/j.cma.2017.07.026.
  • M. Hofacker, and C. Miehe, Continuum phase field modeling of dynamic fracture : variational principles and staggered FE implementation, Int. J. Fract., vol. 178, no. 1–2, pp. 113–129, 2012. DOI: 10.1007/s10704-012-9753-8.
  • G. Molnár, and A. Gravouil, 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture, Finite Elem. Anal. Des., vol. 130, no. March, pp. 27–38, Aug. 2017. DOI: 10.1016/j.finel.2017.03.002.
  • Y. Kriaa, H. Hentati, and B. Zouari, Applying the phase-field approach for brittle fracture prediction: numerical implementation and experimental validation, Mech. Adv. Mater. Struct., vol. 29, no. 6, pp. 828–839, Feb. 2022. DOI: 10.1080/15376494.2020.1795957.
  • M.A. Msekh, J.M. Sargado, M. Jamshidian, P.M. Areias, and T. Rabczuk, Abaqus implementation of phase-field model for brittle fracture, Comput. Mater. Sci., vol. 96, pp. 472–484, Jan. 2015. DOI: 10.1016/j.commatsci.2014.05.071.
  • G. Liu, Q. Li, M.A. Msekh, and Z. Zuo, Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model, Comput. Mater. Sci., vol. 121, pp. 35–47, 2016. DOI: 10.1016/j.commatsci.2016.04.009.
  • P. Esmaeilzadeh, R.A. Behnagh, M. Agha Mohammad Pour, X. Zhang, and Y. Liao, Phase-field modeling of fracture and crack growth in friction stir processed pure copper, Int. J. Adv. Manuf. Technol., vol. 109, pp. 2377–2392, 2020.
  • C. Miehe, F. Welschinger, and M. Hofacker, Thermodynamically consistent phase-field models of fracture : variational principles and multi-field FE implementations, Int. J. Numer. Meth. Engng., vol. 83, no. 10, pp. 1273–1311, Mar. 2010. DOI: 10.1002/nme.2861.
  • M.N. da Silva, F.P. Duda, and E. Fried, Sharp-crack limit of a phase-field model for brittle fracture, J. Mech. Phys. Solids, vol. 61, no. 11, pp. 2178–2195, Nov. 2013. DOI: 10.1016/j.jmps.2013.07.001.
  • C. Miehe, M. Hofacker, and F. Welschinger, A phase fi eld model for rate-independent crack propagation : Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Eng., vol. 199, no. 45–48, pp. 2765–2778, 2010. DOI: 10.1016/j.cma.2010.04.011.
  • J.M. Galea, E. Mallia, J. Rothwell, and J. Diedrichsen, The dissociable effects of punishment and reward on motor learning, Nat Neurosci., vol. 18, no. 4, pp. 597–602, Apr. 2015. DOI: 10.1038/nn.3956.
  • N.-H. Kim, Introduction to Nonlinear Finite Element Analysis, Springer US, New York, 2015.
  • G.G.V. Douglas, C. Montgomery, and E.A. Peck, Introduction to Linear Regression Analysis, 6th ed.; John Wiley & Sons, Hoboken, New Jersey, 2021.
  • D.G. Douglas, and M. Watts, Nonlinear Regression Analysis and Its Applications, John Wiley & Sons, Hoboken, New Jersey, 1988. DOI: 10.1002/9780470316757.
  • Y.-Z. Wang, G.-Q. Li, Y.-B. Wang, and Y.-F. Lyu, Simplified method to identify full von Mises stress-strain curve of structural metals, J. Constr. Steel Res., vol. 181, p. 106624, Jun. 2021. DOI: 10.1016/j.jcsr.2021.106624.
  • N. Singh, C.V. Verhoosel, R. de Borst, and E.H. van Brummelen, A fracture-controlled path-following technique for phase-field modeling of brittle fracture, Finite Elem. Anal. Des., vol. 113, pp. 14–29, Jun. 2016. DOI: 10.1016/j.finel.2015.12.005.
  • J.W. Ferkany, Molecular biology and biotechnology. A comprehensive desk reference, J. Med. Chem., vol. 39, no. 7, pp. 1565–1566, Jan. 1996. DOI: 10.1021/jm960027m.
  • G.A. Zarb, Prosthodontic Treatment for Edentulous Patients : complete Dentures and Implant-Supported Prostheses, 13th ed. St. Louis, MO : Elsevier Mosby, 2013.
  • M. Kutz, Ed., Handbook of Materials Selection, John Wiley & Sons, Inc., New York, 2002.
  • L. Gerchikov, Victor Mossman, and Michele Whitehead, Modeling attenuation versus length in practical light guides, Leukos, vol. 1, no. 4, pp. 47–59, 2005. DOI: 10.1582/LEUKOS.01.04.003.
  • J.W. Ferkany, Molecular Biology and Biotechnology, A Comprehensive Desk Reference, vol. 39, no. 7, pp. 1565–1566, 1996.
  • R.G. Hill, Biomedical polymers. In: Biomaterials, Artificial Organs and Tissue Engineering, Elsevier, Netherlands, 2005. pp. 97–106.
  • D.G. Rethwisch, and W.D. Callister, Jr., Materials Science and Engineering: an Introduction, Wiley, New York, 2009.
  • M. Braden, Polymeric prosthetic materials. In: J.A. von Fraunhofer (ed.), Scientific Aspects of Dental Materials, Butterworths, London, 1975.
  • ASTM E1820-09, Standard Test Method for Measurement of Fracture Toughness, ASTM International: West Conshohocken, PA, 2009.
  • ASTM International, ASTM D638-14, Standard Test Method for Tensile Properties of Plastics, ASTM International: West Conshohocken, PA, 2015.
  • S.S. Rao, Finite element methods. In: Encyclopedia of Vibration, 1st ed.; Elsevier Academic Press, Cambridge, Massachusetts, 2001, pp. 1645.
  • C. Luo, Fast staggered schemes for the phase-field model of brittle fracture based on the fixed-stress concept, Comput. Methods Appl. Mech. Eng., vol. 404, p. 115787, 2023. DOI: 10.1016/j.cma.2022.115787.
  • R.L. Taylor, and O.C. Zienkiewicz, The Finite Element Method for Solid and Structural Mechanics, Elsevier, Butterworth-Heinemann, 2014. DOI: 10.1016/C2009-0-26332-X.
  • G.R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech. ASME, vol. E24, pp. 351–369, 1957.
  • Y.-G. Tong, W.-G. Jiang, R.-Z. Zhong, and Q.H. Qin, Homogenized finite element analysis on effective elastoplastic mechanical behaviors of composite with imperfect interfaces, Int. J. Mol. Sci., vol. 15, no. 12, pp. 23389–23407, 2014. DOI: 10.3390/ijms151223389.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.