55
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Full-field contact dynamic mechanical properties of tread rubber material under rolling and slippery conditions based on digital image correlation

, , &
Received 01 Feb 2023, Accepted 28 Nov 2023, Published online: 05 Dec 2023

References

  • S. Saha, P. Schramm, A. Nolan, and J. Hess, Adverse weather conditions and fatal motor vehicle crashes in the United States, 1994-2012, Environ. Health., vol. 15, no. 1, pp. 1–9, 2016. DOI: 10.1186/s12940-016-0189-x.
  • H. Brodsky, and A.S. Hakkert, Risk of a road accident in rainy weather, Accid. Anal. Prev., vol. 20, no. 3, pp. 161–176, 1988. DOI: 10.1016/0001-4575(88)90001-2.
  • J.I. Nazif-Munoz, P. Martínez, A. Williams, and J. Spengler, The risks of warm nights and wet days in the context of climate change: assessing road safety outcomes in Boston, USA and Santo Domingo, Dominican Republic, Inj. Epidemiol., vol. 8, no. 1, pp. 47, 2021. DOI: 10.1186/s40621-021-00342-w.
  • M. Haghani, A. Behnood, O. Oviedo-Trespalacios, and M.C. Bliemer, Structural anatomy and temporal trends of road accident research: full-scope analyses of the field, J. Safety Res., vol. 79, pp. 173–198, 2021. DOI: 10.1016/j.jsr.2021.09.002.
  • G. Maycock, Second paper: studies on the skidding resistance of passenger-car tyres on wet surfaces, Proc. Instit. Mech. Engineers Autom. Div., vol. 180, no. 1, pp. 122–157, 1965. DOI: 10.1243/PIME_AUTO_1965_180_015_02.
  • V.D.A. Veiga, T.M. Rossignol, JdS Crespo, and L.N. Carli, Tire tread compounds with reduced rolling resistance and improved wet grip, J. Appl. Polymer Sci., vol. 134, no. 39, pp. 45334, 2017. DOI: 10.1002/app.45334.
  • V. Todoroff, S. Paupy, F. Biesse, and Y. Le Chenadec, The mechanisms involved during the wet braking of new and worn tires, Veh. Syst. Dyn., vol. 57, no. 11, pp. 1601–1620, 2019. DOI: 10.1080/00423114.2018.1535126.
  • W. Blythe, and D.E. Seguin, Friction, tread depth and water; Laboratory investigations of passenger car tire cornering performance under minimally-wet conditions, SAE Technical Paper, 2013. DOI: 10.4271/2013-01-0789.
  • W. Blythe, and T.D. Day, Single vehicle wet road loss of control; effects of tire tread depth and placement, SAE Trans., vol. 1, pp. 754–778, 2002. https://www.jstor.org/stable/44719251.
  • Z. El-Sayegh, and M. El-Gindy, Cornering characteristics of a truck tire on wet surface using finite element analysis and smoothed-particle hydrodynamics, Int. J. Dynam. Control., vol. 6, no. 4, pp. 1567–1576, 2018. DOI: 10.1007/s40435-018-0403-5.
  • D. Chen, X. Yang, M. Zhong, C. Chen, L. Wang, J. Wang, X. Weng, Y. Li, and Z. Chang, Inspired by tree frog: bionic design of tread pattern and its wet friction properties, J. Bionic. Eng., vol. 19, no. 4, pp. 1064–1076, 2022. DOI: 10.1007/s42235-022-00184-2.
  • B.E. Sabey, T. Williams, and G. Lupton, Factors affecting the friction of tires on wet roads, SAE Trans., vol. 7, pp. 1203–1218, 1970. https://www.jstor.org/stable/44644490.
  • M.-T. Do, V. Cerezo, Y. Beautru, and M. Kane, Influence of thin water film on skid resistance, J. Traffic Transp. Eng., vol. 2, pp. 36–44, 2014.
  • J. Ejsmont, L. Sjögren, B. Świeczko-Żurek, and G. Ronowski, Influence of road wetness on tire-pavement rolling resistance, J. Civil Eng. Archit., vol. 9, pp. 1302–1310, 2015. DOI: 10.17265/1934-7359/2015.11.004.
  • Y. Yoo, K. Jeon, D. Jung, and S. Hwang, Uncertainty factor analysis of tyre wet grip index for EU and Korea tyre labelling system, in 2013 World Electric Vehicle Symposium and Exhibition (EVS27), IEEE, 2013. pp. 1–7. DOI: 10.1109/EVS.2013.6914923.
  • M. Yu, Z. You, G. Wu, L. Kong, C. Liu, and J. Gao, Measurement and modeling of skid resistance of asphalt pavement: a review, Constr. Build. Mater., vol. 260, pp. 119878, 2020. DOI: 10.1016/j.conbuildmat.2020.119878.
  • S.B.F. Baihaqi, H. Sutanto, and A.D. Soewono, The measurements of vehicle braking performance in wet asphalt road conditions, Int. J. Appl. Eng. Res., vol. 16, pp. 143–146, 2021. http://www.ripublication.com.
  • B. Chen, X. Zhang, J. Yu, and Y. Wang, Impact of contact stress distribution on skid resistance of asphalt pavements, Constr. Build. Mater., vol. 133, pp. 330–339, 2017. DOI: 10.1016/j.conbuildmat.2016.12.078.
  • J. Wu, C. Zhang, Y. Wang, B. Su, and B. Gond, Investigation on wet skid resistance of tread rubber, Exp. Tech., vol. 43, no. 1, pp. 81–89, 2019. DOI: 10.1007/s40799-018-0272-z.
  • B.N. Persson, U. Tartaglino, O. Albohr, and E. Tosatti, Rubber friction on wet and dry road surfaces: the sealing effect, Phys. Rev. B., vol. 71, no. 3, pp. 1–8, 2005. 035428. DOI: 10.1103/PhysRevB.71.035428.
  • Y. Wu, Y. Zhou, J. Li, H. Zhou, J. Chen, and H. Zhao, A comparative study on wear behavior and mechanism of styrene butadiene rubber under dry and wet conditions, Wear., vol. 356-357, pp. 1–8, 2016. DOI: 10.1016/j.wear.2016.01.025.
  • X. Claeys, J. Yi, L. Alvarez, R. Horowitz, C.C. de Wit, and L. Richard, Tire friction modeling under wet road conditions, in Proceedings of the 2001 American Control Conference (Cat. No. 01CH37148), IEEE, 2001. pp. 1794–1799. DOI: 10.1109/ACC.2001.945994.
  • T. Fwa, and G.P. Ong, Wet-pavement hydroplaning risk and skid resistance: analysis, J. Transp. Eng., vol. 134, no. 5, pp. 182–190, 2008. 10.1016/j.ijtst.2017.08.001. DOI: 10.1061/(ASCE)0733-947X(2008)134:5(182).
  • T. Fwa, Skid resistance determination for pavement management and wet-weather road safety, Int. J. Transp. Sci. Technol., vol. 6, no. 3, pp. 217–227, 2017. DOI: 10.1016/j.ijtst.2017.08.001.
  • T. Fwa, and L. Chu, The concept of pavement skid resistance state, Road Mater. Pavement Des., vol. 22, no. 1, pp. 101–120, 2021. DOI: 10.1080/14680629.2019.1618366.
  • J. Löwer, P. Wagner, H.-J. Unrau, C. Bederna, and F. Gauterin, Physical model of tire-road contact under wet conditions, Tribol Lett., vol. 68, no. 1, pp. 1–14, 2020. DOI: 10.1007/s11249-019-1264-6.
  • J. Löwer, P. Wagner, H. Unrau, C. Bederna, and F. Gauterin, Dynamic measurement of the fluid pressure in the tire contact area on wet roads, Automot. Engine Technol., vol. 5, no. 1-2, pp. 29–36, 2020. DOI: 10.1007/s41104-020-00056-z.
  • T. Tang, K. Anupam, C. Kasbergen, R. Kogbara, A. Scarpas, and E. Masad, Finite element studies of skid resistance under hot weather condition, Transp. Res. Rec., vol. 2672, no. 40, pp. 382–394, 2018. DOI: 10.1177/0361198118796728.
  • G.P. Ong, and T. Fwa, Wet-pavement hydroplaning risk and skid resistance: modeling, J. Transp. Eng., vol. 133, no. 10, pp. 590–598, 2007. DOI: 10.1061/(ASCE)0733-947X(2007)133:10(590).
  • J. Cho, H. Lee, and W. Yoo, A wet‐road braking distance estimate utilizing the hydroplaning analysis of patterned tire, Numer. Meth. Eng., vol. 69, no. 7, pp. 1423–1445, 2007. DOI: 10.1002/nme.1813.
  • D.W. Wang, A. Schacht, S. Schmidt, M. Oeser, B. Steinauer, and X.H. Chen, Continuous evaluation of the road skid resistance with ViaFriction, AMM., vol. 405-408, pp. 1791–1794, 2013. Trans Tech Publ. DOI: 10.4028/www.scientific.net/AMM.405-408.1791.
  • P. Maboo Subhani, and R. Krishna Kumar, A new stored energy function for rubber like materials for low strains, Mech. Adv. Mater. Struct., vol. 16, no. 5, pp. 402–416, 2009. DOI: 10.1080/15376490902781167.
  • T. Wu, M. Li, X. Zhu, and X. Lu, Research on non-pneumatic tire with gradient anti-tetrachiral structures, Mech. Adv. Mater. Struct., vol. 28, no. 22, pp. 2351–2359, 2020. DOI: 10.1080/15376494.2020.1734888.
  • R. Rugsaj, and C. Suvanjumrat, Development of a novel spoke structure of non-pneumatic tires for skid-steer loaders using finite element analysis, Mech. Adv. Mater. Struct., vol. 51, no. 12, pp. 6905–6927, 2022. DOI: 10.1080/15397734.2022.2076692.
  • X. Li, M. Guo, and X. Zhou, A multivariate multiple regression analysis of tire-road contact peak triaxial stress by using machine learning methods, Mech. Adv. Mater. Struct., vol. 30, no. 1, pp. 67–82, 2023. DOI: 10.1080/15376494.2021.2008067.
  • C. Pérez-Aranda, and F. Avilés, Electromechanical properties of carbon-nanostructured elastomeric composites measured by digital image correlation, Compos. C Open Access., vol. 5, p. 100161, 2021. DOI: 10.1016/j.jcomc.2021.100161.
  • L. I. Farfán-Cabrera, J.B. Pascual-Francisco, O. Barragán-Pérez, E.A. Gallardo-Hernández, and O. Susarrey-Huerta, Determination of creep compliance, recovery and Poisson’s ratio of elastomers by means of digital image correlation (DIC), Polym. Test., vol. 59, pp. 245–252, 2017. DOI: 10.1016/j.polymertesting.2017.02.010.
  • J.B. Pascual-Francisco, L.I. Farfan-Cabrera, and O. Susarrey-Huerta, Characterization of tension set behavior of a silicone rubber at different loads and temperatures via digital image correlation, Polym. Test., vol. 81, pp. 106226, 2019. DOI: 10.1016/j.polymertesting.2019.106226.
  • C. Liang, M. Shan, G. Wang, D. Zhu, and X. Chen, A method for tire wet grip performance evaluation based on grounding characteristics, Proc. Instit. Mech. Engineers D J. Autom. Eng., vol. 236, no. 1, pp. 109–117, 2022. DOI: 10.1177/09544070211015880.
  • A.J. Niskanen, and A.J. Tuononen, Three 3-axis accelerometers fixed inside the tyre for studying contact patch deformations in wet conditions, Veh. Syst. Dyn., vol. 52, no. sup1, pp. 287–298, 2014. DOI: 10.1080/00423114.2014.898777.
  • A.J. Tuononen, and M.J. Matilainen, Real-time estimation of aquaplaning with an optical tyre sensor, Proc. Instit. Mech. Engineers D J. Autom. Eng., vol. 223, no. 10, pp. 1263–1272, 2009. DOI: 10.1243/09544070JAUTO1220.
  • A. Shabana, A computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics, Nonlinear Dyn., vol. 16, no. 3, pp. 293–306, 1998. DOI: 10.1023/A:1008072517368.
  • X. Gao, Y. Zhuang, S. Liu, W. Fan, C. Zhu, and Q. Chen, High-speed 3D digital image correlation for rolling deformation of a tire sidewall and measuring dynamic contact patch length, Appl Opt., vol. 59, no. 5, pp. 1313–1322, 2020. DOI: 10.1364/AO.377604.
  • J. Orteu, Image correlation for shape, motion and deformation measurements, image correlation for shape, motion and deformation measurements, vol. 5, pp. 55–98, 2009.
  • Y. Wang, Y. Liu, X. Gao, W. Fan, Z. Long, X. Li, Y. Yan, and J. Wang, A new non-contact method for calculating deformation resistance of tire tread rubber material under rolling condition, Optik., vol. 269, pp. 169835, 2022. DOI: 10.1016/j.ijleo.2022.169835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.