65
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Design and performance analysis of 3-D braided piezoelectric composite vibration energy harvester

&
Received 03 Jul 2023, Accepted 05 Dec 2023, Published online: 02 Jan 2024

References

  • H.J. Ryu, J.H. Hong, and W.K. Sang, Hybrid energy harvesters: toward sustainable energy harvesting, Adv. Mater., vol. 31, no. 34, pp. 1802898, 2019. DOI: 10.1002/adma.201802898.
  • J. Li, Quadrilateral scaled boundary spectral shell elements with functionally graded piezoelectric materials, Thin Wall. Struct., vol. 183, pp. 110357, 2023. DOI: 10.1016/j.tws.2022.110357.
  • Y. Chen, Z.C. Yang, and S.X. Zhou, Wide bandwidth wind-induced vibration energy harvester with an angle section head, Int. J. Appl. Mech., vol. 14, no. 3, pp. 2250021, 2022.
  • R. Sun, D. Liu, and Z. Yan, A finite element approach for flexoelectric nonuniform nanobeam energy harvesters, Mech. Adv. Mater. Struc., vol. 30, no. 12, pp. 2430–2441, 2023. DOI: 10.1080/15376494.2022.2053914.
  • Z.Q. Qin, D. Xu, J. Zang, and Y.W. Zhang, A Composite Vibration Energy-Harvesting Absorber, Int. J. Appl. Mech., vol. 15, no. 7, pp. 2350004, 2023.
  • D.S. Ibrahim, Y. Feng, X. Shen, U. Sharif, and A.A. Umar, On geometrical configurations of vibration-driven piezoelectric energy harvesters for optimum energy transduction: a critical review, Mech. Adv. Mater. Struc., vol. 30, no. 7, pp. 1340–1356, 2023. DOI: 10.1080/15376494.2022.2031357.
  • Y.W. Zhang, C. Su, Z.Y. Ni, J. Zang, and L.Q. Chen, A multifunctional lattice sandwich structure with energy harvesting and nonlinear vibration control, Compos. Struct., vol. 221, pp. 110875, 2019. DOI: 10.1016/j.compstruct.2019.04.047.
  • L. Wang, L. Zhao, Z. Jiang, G. Luo, P. Yang, X. Han, X. Li, and R. Maeda, High accuracy comsol simulation method of bimorph cantilever for piezoelectric vibration energy harvesting, AIP Adv., vol. 9, no. 9, pp. 095067, 2019.
  • S.S. Raju, M. Umapathy, and G. Uma, Design and analysis of high output piezoelectric energy harvester using non uniform beam, Mech. Adv. Mater. Struc., vol. 27, no. 3, pp. 218–227, 2020. DOI: 10.1080/15376494.2018.1472341.
  • S. Adhikari, M.I. Friswell, and D.J. Inman, Piezoelectric energy harvesting from broadband random vibrations, Smart Mater. Struct., vol. 18, no. 11, pp. 115005, 2009. DOI: 10.1088/0964-1726/18/11/115005.
  • Q.Q. Lu, L.W. Liu, X. Lan, Y.J. Liu, and J.S. Leng, Dynamic responses of SMA-epoxy composites and application for piezoelectric energy harvesting, Compos. Struct., vol. 153, pp. 843–850, 2016. DOI: 10.1016/j.compstruct.2016.07.008.
  • S.K. Panda, and J. Srinivas, Electro-structural analysis and optimization studies of laminated composite beam energy harvester, Mech. Adv. Mater. Struc., vol. 29, no. 25, pp. 4193–4205, 2022. DOI: 10.1080/15376494.2021.1922787.
  • L. Wang, Y. Wu, and Z. Liu, Theoretical analysis on the adaptive vibration attenuation of a fixed-fixed beam realized by a piezo-shape memory alloy ferrule, J. Intel. Mat. Syst. Str., vol. 30, no. 14, pp. 2079–2090, 2019. DOI: 10.1177/1045389X19853640.
  • S. Raghavan, A. Sharma, and R. Gupta, Resonant frequency tuning of a novel piezoelectric vibration energy harvester (PVEH), Mech. Adv. Mater. Struc., pp. 1–16, 2023. DOI: 10.1080/15376494.2023.2209078.
  • D. Brei, and B.J. Cannon, Piezoceramic hollow fiber active composites, Compos. Sci. Technol., vol. 64, no. 2, pp. 245–261, 2004. DOI: 10.1016/S0266-3538(03)00259-8.
  • T. Yamamoto, H. Igarashi, and K. Okazaki, Electrical and mechanical properties of SiC whisker reinforced PZT ceramics, Ferroelectrics., vol. 63, no. 1, pp. 281–288, 1985. DOI: 10.1080/00150198508221410.
  • Q. Jin, A new electro-mechanical finite formulation for functionally graded graphene reinforced composite laminated thick plates with piezoelectric actuator, Thin Wall. Struct., vol. 176, pp. 109190, 2022. DOI: 10.1016/j.tws.2022.109190.
  • Q.Q. Lu, L.W. Liu, J.S. Leng, F. Scarpa, and Y.J. Liu, Composite piezoelectric energy harvesters with symmetric angle-ply stacking sequences and variable through-the-thickness Poisson’s ratios, Phys. Status. Solidi. B., vol. 257, no. 10, pp. 1–12, 2020.
  • S.S. Prasath, and A. Arockiarajan, Influence of bonding layer on effective electromechanical properties of macro-fiber composites (MFCs), Smart Mater. Struct., vol. 23, no. 9, pp. 095046, 2014. DOI: 10.1088/0964-1726/23/9/095046.
  • H.A. Sodano, G. Park, and D.J. Inman, An investigation into the performance of macro-fiber composites for sensing and structural vibration applications, Mech. Syst. Signal Pr., vol. 18, no. 3, pp. 683–697, 2004. DOI: 10.1016/S0888-3270(03)00081-5.
  • W. Liu, H. Sun, Z. Li, J. Wang, and P. Bai, Dielectric and piezoelectric properties of cement-containing piezoelectric composites: experiments and modeling, Mater. Design., vol. 226, pp. 111689, 2004. DOI: 10.1016/j.matdes.2023.111689.
  • Z.X. Tang, and R. Postle, Mechanics of three-dimensional braided structures for composite materials-Part II: prediction of the elastic moduli, Compos. Struct., vol. 51, no. 4, pp. 451–457, 2001. DOI: 10.1016/S0263-8223(00)00160-4.
  • K. Zhou, and Z. Hu, Stochastic vibration suppression of composite laminated plates based on negative capacitance piezoelectric shunt damping, Thin Wall. Struct., vol. 180, pp. 109802, 2022. DOI: 10.1016/j.tws.2022.109802.
  • H. Wang, B. Sun, and B. Gu, Numerical modeling on compressive behaviors of 3-D braided composites under high temperatures at microstructure level, Compos. Struct., vol. 160, pp. 925–938, 2017. DOI: 10.1016/j.compstruct.2016.10.130.
  • R. Pandey, and H.T. Hahn, Visualization of representative volume elements for three-dimensional four-step braided composites, Compos. Sci. Technol., vol. 56, no. 2, pp. 161–170, 1996. DOI: 10.1016/0266-3538(95)00137-9.
  • L. Xun, S. Huang, B. Sun, and B. Gu, Torsional cracks development in carbon-fiber 3-D braided composite tubes, Thin Wall. Struct., vol. 184, pp. 110477, 2023. DOI: 10.1016/j.tws.2022.110477.
  • L. Xun, Y. Wu, S. Huang, B. Sun, B. Gu, and M. Hu, Degradation of torsional behaviors of 3-D braided thin-walled tubes after atmospheric thermal ageing, Thin Wall. Struct., vol. 170, pp. 108555, 2022. DOI: 10.1016/j.tws.2021.108555.
  • J.D. Clapp, A.C. Young, W.G. Davids, and A.J. Goupee, Bending response of reinforced, inflated, tubular braided fabric structural members, Thin Wall. Struct., vol. 107, pp. 415–426, 2016. DOI: 10.1016/j.tws.2016.06.024.
  • K. Xu and X. Qian, Microstructure analysis and multi-unit cell model of three dimensionally four-directional braided composites, Appl. Compos. Mater., vol. 22, no. 1, pp. 29–50, 2015. DOI: 10.1007/s10443-014-9396-1.
  • L. Jiang, T. Zeng, S. Yan, and D. Fang, Theoretical prediction on the mechanical properties of 3D braided composites using a helix geometry model, Compos. Struct., vol. 100, pp. 511–516, 2013. DOI: 10.1016/j.compstruct.2013.01.016.
  • J. Zhai, S. Cheng, T. Zeng, Z. Wang, and L. Jiang, Thermo-mechanical behavior analysis of 3D braided composites by multiscale finite element method, Compos. Struct., vol. 176, pp. 664–672, 2017. DOI: 10.1016/j.compstruct.2017.05.064.
  • J.J. Zhai, X.X. Kong, and L.C. Wang, Thermo-viscoelastic response of 3D braided composites based on a novel FsMsFE method, Materials., vol. 14, no. 2, pp. 271, 2021. DOI: 10.3390/ma14020271.
  • T. Zeng, D. Fang, L. Guo, and L. Ma, A mechanical model of 3D braided composites with transverse and longitudinal cracks, Compos. Struct., vol. 69, no. 1, pp. 117–125, 2005. DOI: 10.1016/j.compstruct.2004.05.020.
  • L. Chen, X.M. Tao, and C.L. Choy, Mechanical analysis of 3-D braided composites by the finite multiphase element method, Compos. Sci. Technol., vol. 59, no. 16, pp. 2383–2391, 1999. DOI: 10.1016/S0266-3538(99)00087-1.
  • B. Wang, G. Fang, J. Liang, and Z. Wang, Failure locus of 3D four-directional braided composites under biaxial loading, Appl. Compos. Mater., vol. 19, no. 3–4, pp. 529–544, 2012. DOI: 10.1007/s10443-011-9206-y.
  • X.G. Yu, and J.Z. Cui, The prediction on mechanical properties of 4-step braided composites via two-scale method, Compos. Sci. Technol., vol. 67, no. 3–4, pp. 471–480, 2007. DOI: 10.1016/j.compscitech.2006.08.028.
  • C.B. Ni and G.F. Wei, Geometric model and elastic constant prediction of 3D four-step braided composites based on the cubic spline curve, Int. J. Appl. Mechanics., vol. 08, no. 02, pp. 1650019, 2016. DOI: 10.1142/S1758825116500198.
  • L.F. Meng, A.Q. Li, and G.F. Wei, Electromechanical coupling analysis of three-dimensional BPCs energy harvester, Mech. Adv. Mater. Struc., vol. 29, no. 27, pp. 6585–6594, 2021. DOI: 10.1080/15376494.2021.1982089.
  • S.R. Kalidindi, and E. Franco, Numerical evaluation of isostrain and weighted-average models for elastic moduli of three-dimensional composites, Compos. Sci. Technol., vol. 57, no. 3, pp. 293–305, 1997. DOI: 10.1016/S0266-3538(96)00119-4.
  • R. Hill, Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids., vol. 11, no. 5, pp. 357–372, 1963. DOI: 10.1016/0022-5096(63)90036-X.
  • X. Sun, J. Qiao, G. Wei, and H. Zhang, Numerical simulation of electromechanical coupling properties of three-dimensional braiding piezoelectric composite actuator, Results Phys., vol. 23, pp. 104056, 2021. DOI: 10.1016/j.rinp.2021.104056.
  • A. Erturk and D.J. Inman, On mechanical modeling of cantilevered piezoelectric vibration energy harvesters, J. Intel. Mat. Syst. Str., vol. 19, no. 11, pp. 1311–1325, 2008. DOI: 10.1177/1045389X07085639.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.