199
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

The effect of the foam structure and distribution on the thermomechanical vibration behavior of sandwich nanoplates with magneto-electro-elastic face layers

ORCID Icon, ORCID Icon & ORCID Icon
Received 08 Dec 2023, Accepted 05 Jan 2024, Published online: 30 Jan 2024

References

  • S. Zhu, H. Yu, L. Hao, Z. Shen, J. Wang, and L. Guo, Interaction integral method for thermal fracture of nonhomogeneous magneto-electro-elastic materials, Eur. J. Mech. A/Solids, vol. 98, pp. 104871, 2023. DOI: 10.1016/j.euromechsol.2022.104871.
  • Y.-F. Zhao, S.-Q. Zhang, X. Wang, S.-Y. Ma, G.-Z. Zhao, and Z. Kang, Nonlinear analysis of carbon nanotube reinforced functionally graded plates with magneto-electro-elastic multiphase matrix, Compos. Struct., vol. 297, pp. 115969, 2022. DOI: 10.1016/j.compstruct.2022.115969.
  • M. Vinyas, Computational analysis of smart magneto-electro-elastic materials and structures: review and classification, Arch Comput. Methods Eng., vol. 28, no. 3, pp. 1205–1248, 2021. DOI: 10.1007/s11831-020-09406-4.
  • F. Zhang, C. Bai, and J. Wang, Study on dynamic stability of magneto-electro-thermo-elastic cylindrical nanoshells resting on Winkler–Pasternak elastic foundations using nonlocal strain gradient theory, J. Braz. Soc. Mech. Sci. Eng., vol. 45, no. 1, pp. 23, 2022. DOI: 10.1007/s40430-022-03930-z.
  • M.S. Chaki and J. Bravo-Castillero, A mathematical analysis of anti-plane surface wave in a magneto-electro-elastic layered structure with non-perfect and locally perturbed interface, Eur. J. Mech. A/Solids, vol. 97, pp. 104820, 2023. DOI: 10.1016/j.euromechsol.2022.104820.
  • Z. Gong, Y. Zhang, E. Pan, and C. Zhang, Field concentration and distribution in three-dimensional magneto-electro-elastic plates with open holes, Eur. J. Mech. A/Solids, vol. 99, pp. 104914, 2023. DOI: 10.1016/j.euromechsol.2023.104914.
  • D.A. Hadjiloizi, A.L. Kalamkarov, C. Metti, and A.V. Georgiades, Analysis of smart piezo-magneto-thermo-elastic composite and reinforced plates: Part II – Applications, Curved Layer Struct., vol. 1, pp. 32–58, 2014. DOI: 10.2478/cls-2014-0003.
  • M. Hoseinzadeh and J. Rezaeepazhand, Dynamic stability enhancement of laminated composite sandwich plates using smart elastomer layer, J. Sandwich Struct. Mater., vol. 22, no. 8, pp. 2796–2817, Nov. 2020. DOI: 10.1177/1099636218819158.
  • K. Marakakis, G.K. Tairidis, P. Koutsianitis, and G.E. Stavroulakis, Shunt piezoelectric systems for noise and vibration control: A review, Front. Built Environ., vol. 5, pp. 1–17, 2019. DOI: 10.3389/fbuil.2019.00064.
  • J. Ryu, S. Priya, A.V. Carazo, K. Uchino, and H.-E. Kim, Effect of the magnetostrictive layer on magnetoelectric properties in lead zirconate titanate/terfenol-D laminate composites, J. Am. Ceram. Soc., vol. 84, no. 12, pp. 2905–2908, Dec. 2001. DOI: 10.1111/j.1151-2916.2001.tb01113.x.
  • Z. Wang, K. Mori, K. Nakajima, and F. Narita, Fabrication, modeling and characterization of magnetostrictive short fiber composites, Materials, vol. 13, no. 7, pp. 1494, Mar. 2020. DOI: 10.3390/ma13071494.
  • R.K. Bhangale and N. Ganesan, Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates, Int. J. Solids Struct., vol. 43, no. 10, pp. 3230–3253, May 2006. DOI: 10.1016/j.ijsolstr.2005.05.030.
  • W.-T. Park and S.-C. Han, Buckling analysis of nano-scale magneto-electro-elastic plates using the nonlocal elasticity theory, Adv. Mech. Eng., vol. 10, no. 8, pp. 168781401879333, Aug. 2018. DOI: 10.1177/1687814018793335.
  • G.T. Monaco, N. Fantuzzi, F. Fabbrocino, and R. Luciano, Critical temperatures for vibrations and buckling of magneto-electro-elastic nonlocal strain gradient plates, Nanomaterials, vol. 11, no. 1, pp. 87, 2021. DOI: 10.3390/nano11010087.
  • M. Arefi and A.M. Zenkour, Effect of thermo-magneto-electro-mechanical fields on the bending behaviors of a three-layered nanoplate based on sinusoidal shear-deformation plate theory, J. Sandwich Struct. Mater., vol. 21, no. 2, pp. 639–669, Feb. 2019. DOI: 10.1177/1099636217697497.
  • A. Kiani, M. Sheikhkhoshkar, A. Jamalpoor, and M. Khanzadi, Free vibration problem of embedded magneto-electro-thermo-elastic nanoplate made of functionally graded materials via nonlocal third-order shear deformation theory, J. Intell. Mater. Syst. Struct., vol. 29, no. 5, pp. 741–763, Mar. 2018. DOI: 10.1177/1045389X17721034.
  • F. Ebrahimi and M.R. Barati, Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field, J. Intell. Mater. Syst. Struct., vol. 28, no. 11, pp. 1472–1490, Jul. 2017. DOI: 10.1177/1045389X16672569.
  • D.D. Radford, G.J. McShane, V.S. Deshpande, and N.A. Fleck, The response of clamped sandwich plates with metallic foam cores to simulated blast loading, Int. J. Solids Struct., vol. 43, no. 7–8, pp. 2243–2259, Apr. 2006. DOI: 10.1016/j.ijsolstr.2005.07.006.
  • M. Al-Waily, H. Raad, and E.K. Njim, Free vibration analysis of sandwich plate-reinforced foam core adopting micro aluminum powder, Phys. Chem. Solid St., vol. 23, no. 4, pp. 659–668, Nov. 2022. DOI: 10.15330/pcss.23.4.659-668.
  • N. Zhao, R. Ye, A. Tian, J. Cui, P. Ren, and M. Wang, Experimental and numerical investigation on the anti-penetration performance of metallic sandwich plates for marine applications, J. Sandwich Struct. Mater., vol. 22, no. 2, pp. 494–522, Feb. 2020. DOI: 10.1177/1099636219855335.
  • A. Vaziri, Z. Xue, and J.W. Hutchinson, Metal sandwich plates with polymer foam-filled cores, J. Mech. Mater. Struct., vol. 1, no. 1, pp. 97–127, May 2006. DOI: 10.2140/jomms.2006.1.97.
  • A.A. Daikh, M.-O. Belarbi, P. Van Vinh, L. Li, M.S.A. Houari, and M.A. Eltaher, Vibration analysis of tri-directionally coated plate via thickness-stretching and microstructure-dependent modeling, Mech. Res. Commun., vol. 135, pp. 104221, Jan. 2024. DOI: 10.1016/j.mechrescom.2023.104221.
  • M.Y. Tharwan, A.A. Daikh, A.E. Assie, A. Alnujaie, and M.A. Eltaher, A comprehensive study on static response of agglomerated microstructure-dependent coated functionally graded carbon nanotubes reinforced composite nanoshells rested on complex elastic foundation, Mech. Based Des. Struct. Mach., pp. 1–41, Dec. 2023. DOI: 10.1080/15397734.2023.2286484.
  • A.I. Khadir, A.A. Daikh, and M.A. Eltaher, Novel four-unknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates, Adv. Nano Res., vol. 11, no. 6, pp. 621–640, 2021. DOI: 10.12989/anr.2021.11.6.621.
  • A.A. Daikh, A. Bachiri, M.S.A. Houari, and A. Tounsi, Size dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment, Mech. Based Des. Struct. Mach., vol. 50, no. 4, pp. 1371–1399, Apr. 2022. DOI: 10.1080/15397734.2020.1752232.
  • R. Özmen, R. Kılıç, and I. Esen, Thermomechanical vibration and buckling response of nonlocal strain gradient porous FG nanobeams subjected to magnetic and thermal fields, Mech. Adv. Mater. Struct., vol. 0, no. 0, pp. 1–20, 2022. DOI: 10.1080/15376494.2022.2124000.
  • I. Esen and R. Özmen, Free and forced thermomechanical vibration and buckling responses of functionally graded magneto-electro-elastic porous nanoplates, Mech. Based Des. Struct. Mach., pp. 1–38, 2022. DOI: 10.1080/15397734.2022.2152045.
  • M.A. Daikh, A.A. Hamdi, A. Ahmed, H.M. Abdelwahed, M.S. Abdelrahman, and A.A. Eltaher, Buckling and bending of coated FG graphene-reinforced composite plates and shells, Adv. Nano Res., vol. 15, no. 2, pp. 113–128, 2023. DOI: 10.12989/anr.2023.15.2.113.
  • A.A. Daikh, M. Belarbi, A. Khechai, L. Li, S. Khatir, A.A. Abdelrahman, and M.A. Eltaher, Bending of Bi-directional inhomogeneous nanoplates using microstructure-dependent higher-order shear deformation theory, Eng. Struct., vol. 291, pp. 116230, Sep. 2023. DOI: 10.1016/j.engstruct.2023.116230.
  • E.E. Ghandourah, A.A. Daikh, S. Khatir, A.M. Alhawsawi, E.M. Banoqitah, and M.A. Eltaher, A dynamic analysis of porous coated functionally graded nanoshells rested on viscoelastic medium, Mathematics, vol. 11, no. 10, pp. 2407, May 2023. DOI: 10.3390/math11102407.
  • A.A. Daikh, M.-O. Belarbi, A. Khechai, L. Li, H.M. Ahmed, and M.A. Eltaher, Buckling of bi-coated functionally graded porous nanoplates via a nonlocal strain gradient quasi-3D theory, Acta Mech., vol. 234, no. 8, pp. 3397–3420, Aug. 2023. DOI: 10.1007/s00707-023-03548-9.
  • G.S. Abdelhaffez, A.A. Daikh, H.A. Saleem, and M.A. Eltaher, Buckling of coated functionally graded spherical nanoshells rested on orthotropic elastic medium, Mathematics, vol. 11, no. 2, pp. 409, Jan. 2023. DOI: 10.3390/math11020409.
  • M. Basha, A.A. Daikh, A. Melaibari, A. Wagih, R. Othman, K.H. Almitani, M.A. Hamed, A. Abdelrahman and M.A. Eltaher, Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates, Steel Compos. Struct., vol. 43, no. 5, pp. 639–660, 2022. DOI: 10.12989/scs.2022.43.5.639.
  • E.E. Ghandourah, A.A. Daikh, A.M. Alhawsawi, O.A. Fallatah, and M.A. Eltaher, Bending and buckling of FG-GRNC laminated plates via quasi-3D nonlocal strain gradient theory, Mathematics, vol. 10, no. 8, pp. 1321, Apr. 2022. DOI: 10.3390/math10081321.
  • A. Melaibari A.A.Daikh, M. Basha, A.W. Abdalla, R. Othman, K.H. Almitani, M.A. Hamed, A. Abdelrahman, and M.A. Eltaher, Free vibration of FG-CNTRCs nano-plates/shells with temperature-dependent properties, Mathematics, vol. 10, no. 4, pp. 583, Feb. 2022. DOI: 10.3390/math10040583.
  • A. Garg, H.D. Chalak, L. Li, M.-O. Belarbi, R. Sahoo, and T. Mukhopadhyay, Vibration and buckling analyses of sandwich plates containing functionally graded metal foam core, Acta Mech. Solida Sin., vol. 35, no. 4, pp. 1–16, Aug. 2022. DOI: 10.1007/s10338-021-00295-z.
  • Y.S. Touloukian, Thermophysical Properties of High Temperature Solid Materials, Macmillan, New York, NY, 1967.
  • Y.S. Touloukian, Thermophysical Properties of High Temperature Solid Materials. Volume 4. Oxides and Their Solutions and Mixtures. Part 1, Vol 1, Macmillan, New York, NY, 1966.
  • Y.Q. Wang and H.L. Zhao, Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method, Arch. Appl. Mech., vol. 89, no. 11, pp. 2335–2349, Nov. 2019. DOI: 10.1007/s00419-019-01579-0.
  • Y. Kiani and M.R. Eslami, An exact solution for thermal buckling of annular FGM plates on an elastic medium, Compos. Part B Eng., vol. 45, no. 1, pp. 101–110, Feb. 2013. DOI: 10.1016/j.compositesb.2012.09.034.
  • T. Yıldız and I. Esen, Effect of foam structure on thermo-mechanical buckling of foam core sandwich nanoplates with layered face plates made of functionally graded material (FGM), Acta Mech., vol. 234, no. 12, pp. 6407–6437, 2023. DOI: 10.1007/s00707-023-03722-z.
  • V. Mahesh, V. Mahesh, and S.A. Ponnusami, FEM-ANN approach to predict nonlinear pyro-coupled deflection of sandwich plates with agglomerated porous nanocomposite core and piezo-magneto-elastic facings in thermal environment, Mech. Adv. Mater. Struct., pp. 1–24, 2023. DOI: 10.1080/15376494.2023.2201927.
  • V.T. Tran, T.K. Nguyen, P.T.T. Nguyen, and T.P. Vo, Stochastic collocation method for thermal buckling and vibration analysis of functionally graded sandwich microplates, J. Therm. Stress., vol. 46, no. 9, pp. 909–934, 2023. DOI: 10.1080/01495739.2023.2217243.
  • D.G. Zhang, Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory, Meccanica, vol. 49, no. 2, pp. 283–293, Feb. 2014. DOI: 10.1007/s11012-013-9793-9.
  • A.C. Eringen, Theories of nonlocal plasticity, Int. J. Eng. Sci., vol. 21, no. 7, pp. 741–751, 1983. DOI: 10.1016/0020-7225(83)90058-7.
  • C.W. Lim, G. Zhang, and J.N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, J. Mech. Phys. Solids, vol. 78, pp. 298–313, 2015. DOI: 10.1016/j.jmps.2015.02.001.
  • L. Li, X. Li, and Y. Hu, Free vibration analysis of nonlocal strain gradient beams made of functionally graded material, Int. J. Eng. Sci., vol. 102, pp. 77–92, May 2016. DOI: 10.1016/j.ijengsci.2016.02.010.
  • A. Farajpour and A. Rastgoo, Influence of carbon nanotubes on the buckling of microtubule bundles in viscoelastic cytoplasm using nonlocal strain gradient theory, Results Phys., vol. 7, pp. 1367–1375, 2017. DOI: 10.1016/j.rinp.2017.03.038.
  • A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., vol. 54, no. 9, pp. 4703–4710, Sep. 1983. DOI: 10.1063/1.332803.
  • K.K. Żur, M. Arefi, J. Kim, and J.N. Reddy, Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory, Compos. Part B Eng., vol. 182, no. September 2019, pp. 107601, 2020. DOI: 10.1016/j.compositesb.2019.107601.
  • E. Carrera and V.V. Zozulya, Carrera unified formulation (CUF) for shells of revolution. I. Higher-order theory, Acta Mech., vol. 234, no. 1, pp. 109–136, 2023. DOI: 10.1007/s00707-022-03372-7.
  • A. Pagani, E. Zappino, F. Bracaglia, R. Masia, and E. Carrera, Thermal stress analysis of variable angle tow composite plates through high-order structural models, Compos. Struct., vol. 327, no. October, pp. 117668, 2024. DOI: 10.1016/j.compstruct.2023.117668.
  • M. Petrolo, A. Pagani, M. Trombini, R. Masia, and E. Carrera, Thermomechanical analysis of carbon fiber-reinforced polymer representative volume elements with voids, J. Reinf. Plast. Compos., 2023. DOI: 10.1177/07316844231206956.
  • E. Carrera and V.V. Zozulya, Carrera unified formulation (CUF) for the composite shells of revolution. Equivalent single layer models, Mech. Adv. Mater. Struct., pp. 1–23, 2023. DOI: 10.1080/15376494.2023.2218380.
  • J.H. Wu, J. Wang, E. Carrera, and R. Augello, An analysis of the propagation of surface acoustic waves in a substrate covered by a metal T-plate with the Carrera unified formulation, Mech. Adv. Mater. Struct., pp. 1–9, 2023. DOI: 10.1080/15376494.2023.2207270.
  • M. Petrolo, R. Augello, E. Carrera, D. Scano, and A. Pagani, Evaluation of transverse shear stresses in layered beams/plates/shells via stress recovery accounting for various CUF-based theories, Compos. Struct., vol. 307, no. January, pp. 116625, 2023. DOI: 10.1016/j.compstruct.2022.116625.
  • V.V. Zozulya and E. Carrera, Carrera unified formulation (CUF) for the micropolar plates and shells. III. Classical models, Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 6336–6360, 2022. DOI: 10.1080/15376494.2021.1975855.
  • E. Pan and P.R. Heyliger, Free vibrations of simply supported and multilayered magneto-electro-elastic plates, J. Sound Vib., vol. 252, no. 3, pp. 429–442, 2002. DOI: 10.1006/jsvi.2001.3693.
  • M. Arefi and A.M. Zenkour, A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment, J. Sandwich Struct. Mater., vol. 18, no. 5, pp. 624–651, 2016. DOI: 10.1177/1099636216652581.
  • M. Arefi and A.M. Zenkour, Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory, Steel Compos. Struct., vol. 26, no. 4, pp. 421–437, 2018. DOI: 10.12989/scs.2018.26.4.421.
  • J.N. Reddy, Energy principles and variational methods. In Theory and Analysis of Elastic Plates and Shells, CRC Press, Boca Raton, 2020. DOI: 10.1201/9780849384165-6.
  • H.S. Kim, S.I. Hong, and S.J. Kim, On the rule of mixtures for predicting the mechanical properties of composites with homogeneously distributed soft and hard particles, J. Mater. Process. Technol., vol. 112, no. 1, pp. 109–113, 2001. DOI: 10.1016/S0924-0136(01)00565-9.
  • I. Esen and R. Özmen, Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity, Compos. Struct., vol. 296, no. March, pp. 115878, Sep. 2022. DOI: 10.1016/j.compstruct.2022.115878.
  • R. Özmen, Thermomechanical vibration and buckling response of magneto-electro-elastic higher order laminated nanoplates, Appl. Math. Model., vol. 122, pp. 373–400, 2023. DOI: 10.1016/j.apm.2023.06.005.
  • T. Yıldız and I. Esen, The effect of the foam structure on the thermomechanical vibration response of smart sandwich nanoplates, Mech. Adv. Mater. Struct., pp. 1–19, 2023. DOI: 10.1080/15376494.2023.2287179.
  • J.N. Reddy and C.D. Chin, Thermomechanical analysis of functionally graded cylinders and plates, J. Therm. Stress., vol. 21, no. 6, pp. 593–626, 1998. DOI: 10.1080/01495739808956165.
  • R. Özmen and I. Esen, Thermomechanical flexural wave propagation responses of FG porous nanoplates in thermal and magnetic fields, Acta Mech., vol. 234, no. 11, pp. 5621–5645, 2023. DOI: 10.1007/s00707-023-03679-z.
  • R. Aghababaei and J.N. Reddy, Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates, J. Sound Vib., vol. 326, no. 1–2, pp. 277–289, 2009. DOI: 10.1016/j.jsv.2009.04.044.
  • M.A. Koç, İ. Esen, and M. Eroğlu, Thermomechanical vibration response of nanoplates with magneto-electro-elastic face layers and functionally graded porous core using nonlocal strain gradient elasticity, Mech. Adv. Mater. Struct., pp. 1–33, Apr. 2023. DOI: 10.1080/15376494.2023.2199412.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.