102
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Vibration analysis of embedded porous nanobeams under thermal effects using boosting machine learning algorithms and semi-analytical approach

, , &
Received 25 Jan 2024, Accepted 15 Feb 2024, Published online: 13 Mar 2024

References

  • D. Chen, J. Yang, and S. Kitipornchai, Elastic buckling and static bending of shear deformable functionally graded porous beam, Compos. Struct., vol. 133, pp. 54–61, 2015. DOI: 10.1016/j.compstruct.2015.07.052.
  • . I. Esen, M.A. Eltaher, and A.A. Abdelrahman, Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass, Mech. Based Des. Struct. Mach., vol. 51, no. 5, pp. 2607–2631, 2023. DOI: 10.1080/15397734.2021.1904255.
  • M.F. Ertenli and İ. Esen, The effect of the various porous layers on thermomechanical buckling of FGM sandwich plates, Mech. Adv. Mater. Struct., pp. 1–27, 2024. DOI: 10.1080/15376494.2023.2299934.
  • Z. Yin, H. Gao, and G. Lin, Bending and free vibration analysis of functionally graded plates made of porous materials according to a novel the semi-analytical method, Eng. Anal. Boundary Elem., vol. 133, pp. 185–199, 2021. DOI: 10.1016/j.enganabound.2021.09.006.
  • C.W. Lim, G. Zhang, and J. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, J. Mech. Phys. Solids., vol. 78, pp. 298–313, 2015. DOI: 10.1016/j.jmps.2015.02.001.
  • G.L. She, K.M. Yan, Y.L. Zhang, H.B. Liu, and Y.R. Ren, Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory, Eur. Phys. J. Plus., vol. 133, no. 9, pp. 1–9, 2018. DOI: 10.1140/epjp/i2018-12196-5.
  • U. Kafkas, B. Uzun, M.Ö. Yaylı, and G. Güçlü, Thermal vibration of perforated nanobeams with deformable boundary conditions via nonlocal strain gradient theory, Zeitschrift für Naturforschung A., vol. 78, no. 8, pp. 681–701, 2023.). DOI: 10.1515/zna-2023-0088.
  • A.A. Abdelrahman, I. Esen, A.A. Daikh, and M.A. Eltaher, Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load, Mech. Based Des. Struct. Mach., vol. 51, no. 10, pp. 5383–5406, 2023. DOI: 10.1080/15397734.2021.1999263.
  • I. Esen, Response of a micro-capillary system exposed to a moving mass in magnetic field using nonlocal strain gradient theory, Int. J. Mech. Sci., vol. 188, pp. 105937, 2020. DOI: 10.1016/j.ijmecsci.2020.105937.
  • M. Dehghan and F. Ebrahimi, On wave dispersion characteristics of magneto-electro-elastic nanotubes considering the shell model based on the nonlocal strain gradient elasticity theory, Eur. Phys. J. Plus., vol. 133, no. 11, pp. 1–17, 2018. DOI: 10.1140/epjp/i2018-12304-7.
  • M.H. Dindarloo, and A.M. Zenkour, Nonlocal strain gradient shell theory for bending analysis of FG spherical nanoshells in thermal environment,
  • K. Ghorbani, A. Rajabpour, M. Ghadiri, and Z. Keshtkar, Investigation of surface effects on the natural frequency of a functionally graded cylindrical nanoshell based on nonlocal strain gradient theory, Eur. Phys. J. Plus., vol. 135, no. 9, pp. 1–23, 2020. DOI: 10.1140/epjp/s13360-020-00712-1.
  • I. Esen, A.A. Daikh, and M.A. Eltaher, Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load, Eur. Phys. J. Plus., vol. 136, no. 4, pp. 1–22, 2021. DOI: 10.1140/epjp/s13360-021-01419-7.
  • C. Özarpa, and I. Esen, Modelling the dynamics of a nanocapillary system with a moving mass using the non‐local strain gradient theory, Math. Method App. Sciences., pp. 1–21, 2020. DOI: 10.1002/mma.6812.
  • M. Eghbali, S.A. Hosseini, and M. Pourseifi, An dynamical evaluation of size-dependent weakened nano-beam based on the nonlocal strain gradient theory, J. Strain Anal. Eng. Des., vol. 58, no. 5, pp. 357–366, 2023. DOI: 10.1177/03093247221135210.
  • I. Esen, and R. Özmen, Free and forced thermomechanical vibration and buckling responses of functionally graded magneto-electro-elastic porous nanoplates, Mech. Based Des. Struct. Mach., vol. 52, no. 3, pp. 1505–1542, 2024. DOI: 10.1080/15397734.2022.2152045.
  • F. Khosravi, S.A. Hosseini, and B.A. Hamidi, Torsional vibration of nanowire with equilateral triangle cross section based on nonlocal strain gradient for various boundary conditions: Comparison with hollow elliptical cross section, Eur. Phys. J. Plus., vol. 135, no. 3, pp. 1–20, 2020. DOI: 10.1140/epjp/s13360-020-00312-z.
  • B. Uzun, Ö. Civalek, and M.Ö. Yaylı, Axial and torsional free vibrations of restrained single-walled boron nitride nanotube (SWBNNT) embedded in an elastic medium via nonlocal strain gradient theory, Waves Random Comp. Med., pp. 1–26, 2022. DOI: 10.1080/17455030.2022.2147600.
  • T. Yıldız and I. Esen, The effect of the foam structure on the thermomechanical vibration response of smart sandwich nanoplates, Mech. Adv. Mater. Struct., pp. 1–19, 2023a. DOI: 10.1080/15376494.2023.2287179.
  • T. Yıldız and I. Esen, Effect of foam structure on thermo-mechanical buckling of foam core sandwich nanoplates with layered face plates made of functionally graded material (FGM), Acta Mech., vol. 234, no. 12, pp. 6407–6437, 2023b. DOI: 10.1007/s00707-023-03722-z.
  • B. Karami, D. Shahsavari, and M. Janghorban, Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory, Mech. Adv. Mater. Struct., vol. 25, no. 12, pp. 1047–1057, 2018. DOI: 10.1080/15376494.2017.1323143.
  • F. Ebrahimi and M.R. Barati, Vibration analysis of biaxially compressed double-layered graphene sheets based on nonlocal strain gradient theory, Mech. Adv. Mater. Struct., vol. 26, no. 10, pp. 854–865, 2019. DOI: 10.1080/15376494.2018.1430267.
  • M.H. Ghayesh and A. Farajpour, Nonlinear coupled mechanics of nanotubes incorporating both nonlocal and strain gradient effects, Mech. Adv. Mater. Struct., vol. 27, no. 5, pp. 373–382, 2020. DOI: 10.1080/15376494.2018.1473537.
  • H. Babaei, and M.R. Eslami, Study on nonlinear vibrations of temperature-and size-dependent FG porous arches on elastic foundation using nonlocal strain gradient theory, Eur. Phys. J. Plus., vol. 136, no. 1, pp. 1–28, 2021. DOI: 10.1140/epjp/s13360-020-00959-8.
  • H. Darban, F. Fabbrocino, L. Feo, and R. Luciano, Size-dependent buckling analysis of nanobeams resting on two-parameter elastic foundation through stress-driven nonlocal elasticity model, Mech. Adv. Mater. Struct., vol. 28, no. 23, pp. 2408–2416, 2021. DOI: 10.1080/15376494.2020.1739357.
  • M.A. Eltaher, and N. Mohamed, Nonlinear stability and vibration of imperfect CNTs by doublet mechanics, Appl. Math. Comput., vol. 382, pp. 125311, 2020. DOI: 10.1016/j.amc.2020.125311.
  • M.A. Eltaher, A.A. Abdelrahman, and I. Esen, Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load, Eur. Phys. J. Plus., vol. 136, no. 7, pp. 705, 2021. DOI: 10.1140/epjp/s13360-021-01682-8.
  • I. Esen, C. Ozarpa, and M.A. Eltaher, Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment, Compos. Struct., vol. 261, pp. 113552, 2021. DOI: 10.1016/j.compstruct.2021.113552.
  • I. Esen, Dynamics of size-dependant Timoshenko micro beams subjected to moving loads, Int. J. Mech. Sci., vol. 175, pp. 105501, 2020. DOI: 10.1016/j.ijmecsci.2020.105501.
  • L. Feo, G. Lovisi, and R. Penna, Free vibration analysis of functionally graded nanobeams based on surface stress-driven nonlocal model, Mech. Adv. Mater. Struct., pp. 1–9, 2023. DOI: 10.1080/15376494.2023.2289079.
  • U. Gul and M. Aydogdu, A micro/nano-scale Timoshenko-Ehrenfest beam model for bending, buckling and vibration analyses based on doublet mechanics theory, Eur. J. Mech. A/Solids., vol. 86, pp. 104199, 2021. DOI: 10.1016/j.euromechsol.2020.104199.
  • R. Özmen and I. Esen, Dynamic response of embedded Timoshenko CNTs exposed to magnetic and thermal fields subjected to moving load based on doublet mechanics, J. Braz. Soc. Mech. Sci. Eng., vol. 45, no. 11, pp. 590, 2023. DOI: 10.1007/s40430-023-04506-1.
  • R. Penna, A. Lambiase, G. Lovisi, and L. Feo, Investigating hygrothermal bending behavior of FG nanobeams via local/nonlocal stress gradient theory of elasticity with general boundary conditions, Mech. Adv. Mater. Struct., pp. 1–10, 2023. DOI: 10.1080/15376494.2023.2269938.
  • L. Li, R. Lin, and Y. Hu, Cross-section effect on mechanics of nonlocal beams, Arch. Appl. Mech., vol. 91, no. 4, pp. 1541–1556, 2021. DOI: 10.1007/s00419-020-01839-4.
  • L.V. Tran and J. Niiranen, A geometrically nonlinear Euler–Bernoulli beam model within strain gradient elasticity with isogeometric analysis and lattice structure applications, Math. Mech. Compl. Sys., vol. 8, no. 4, pp. 345–371, 2020. DOI: 10.2140/memocs.2020.8.345.
  • X. Zhao, S. Zheng, and Z. Li, Bending, free vibration and buckling analyses of AFG flexoelectric nanobeams based on the strain gradient theory, Mech. Adv. Mater. Struct., vol. 29, no. 4, pp. 548–563, 2022. DOI: 10.1080/15376494.2020.1779880.
  • R. Barretta, S.A. Faghidian, F. Marotti de Sciarra, and M.S. Vaccaro, Nonlocal strain gradient torsion of elastic beams: variational formulation and constitutive boundary conditions, Arch. Appl. Mech., vol. 90, no. 4, pp. 691–706, 2020. DOI: 10.1007/s00419-019-01634-w.
  • R. Barretta, S. Ali Faghidian, F.M. de Sciarra, and F.P. Pinnola, Timoshenko nonlocal strain gradient nanobeams: variational consistency, exact solutions and carbon nanotube Young moduli, Mech. Adv. Mater. Struct., vol. 28, no. 15, pp. 1523–1536, 2021. DOI: 10.1080/15376494.2019.1683660.
  • A.F. Santos, R. Aguado, M.L. Corazza, Q. Tarrés, J.-L. Sanchez-Salvador, A. Blanco, C. Negro, and M. Delgado-Aguilar, Artificial neural network for aspect ratio prediction of lignocellulosic micro/nanofibers, Cellulose., vol. 29, no. 10, pp. 5609–5622, 2022. DOI: 10.1007/s10570-022-04631-5.
  • S. Mouloodi, H. Rahmanpanah, C. Burvill, S. Gohari, and H.M.S. Davies, Experimental, regression learner, numerical, and artificial neural network analyses on a complex composite structure subjected to compression loading, Mech. Adv. Mater. Struct., vol. 29, no. 17, pp. 2437–2453, 2022. DOI: 10.1080/15376494.2020.1864071.
  • S. Yildirim, Free vibration of axially or transversely graded beams using finite-element and artificial intelligence, Alexandr. Eng. J., vol. 61, no. 3, pp. 2220–2229, 2022. DOI: 10.1016/j.aej.2021.07.004.
  • Y.S. Al Rjoub and J.A. Alshatnawi, Free vibration of functionally graded porous cracked plates, In Struct., vol. 28, pp. 2392–2403, 2020, December. DOI: 10.1016/j.istruc.2020.10.059.
  • X. Cheng, S.H. Al-Khafaji, M. Hashemian, M. Ahmed, S.A. Eftekhari, A.I. Alanssari, N.M. diaa, M.M. Karim, D. Toghraie, and A.H. Alawadi, Statistical analysis and neural network modeling of functionally graded porous nanobeams vibration in an elastic medium by considering the surface effects, Eng. Appl. Artif. Intell., vol. 123, pp. 106313, 2023. DOI: 10.1016/j.engappai.2023.106313.
  • A. Tariq, B. Uzun, B. Deliktaş, and M.Ö. Yaylı, Assessment of machine learning methods predicting the axial vibration frequencies of microbars, Z Angew. Math. Mech., pp. e202300916, 2023. DOI: 10.1002/zamm.202300916.
  • X. Liu, Y. Xu, J. Li, X. Ong, S.A. Ibrahim, T. Buonassisi, and X. Wang, A robust low data solution: dimension prediction of semiconductor nanorods, Comput. Chem. Eng., vol. 150, pp. 107315, 2021. DOI: 10.1016/j.compchemeng.2021.107315.
  • G. Chen, L. Xia, Y. Wu, and A.M. Alshamrani, Energy absorption in composite structure reinforced with advanced functionally graded nano-materials: artificial intelligence and numerical approaches, Mech. Adv. Mater. Struct., pp. 1–15, 2023. DOI: 10.1080/15376494.2023.2286637.
  • B. Xi, E. Li, Y. Fissha, J. Zhou, and P. Segarra, LGBM-based modeling scenarios to compressive strength of recycled aggregate concrete with SHAP analysis, Mech. Adv. Mater. Struct., pp. 1–16, 2023. DOI: 10.1080/15376494.2023.2224782.
  • B.P. Koya, S. Aneja, R. Gupta, and C. Valeo, Comparative analysis of different machine learning algorithms to predict mechanical properties of concrete, Mech. Adv. Mater. Struct., vol. 29, no. 25, pp. 4032–4043, 2022. DOI: 10.1080/15376494.2021.1917021.
  • S.-L. Sun, X.-Y. Zhang, and X.-F. Li, Estimation of compressive strength for spiral stirrup-confined circular concrete column using optimized machine learning with interpretable techniques, Mech. Adv. Mater. Struct., pp. 1–11, 2023. DOI: 10.1080/15376494.2023.2298232.
  • G. Yan, X. Zhou, M.A. El-Meligy, and M. Sharaf, Nonlinear vibration analysis of graphene platelets reinforced nanocomposite doubly curved concrete panels subjected to thermal shock: development of an artificial intelligence technique, Mech. Adv. Mater. Struct., pp. 1–22, 2023. DOI: 10.1080/15376494.2023.2242849.
  • F. Wang and A.M. Alshamrani, Nonlinear dynamical behavior and energy harvesting analyses of flexoelectric MEMS under residual stresses: application of machine learning for simulating the system, Mech. Adv. Mater. Struct., pp. 1–19, 2024. DOI: 10.1080/15376494.2024.2301731.
  • M. Galeban, A. Mojahedin, Y. Taghavi, and M. Jabbari, Free vibration of functionally graded thin beams made of saturated porous materials, Steel Compos. Struct., vol. 21, no. 5, pp. 999–1016, 2016. DOI: 10.12989/scs.2016.21.5.999.
  • S. Karmakar and S. Chakraverty, Thermal vibration of nonhomogeneous Euler nanobeam resting on Winkler foundation, Eng. Anal. Boundary Elem., vol. 140, pp. 581–591, 2022. DOI: 10.1016/j.enganabound.2022.04.020.
  • M.Ö. Yaylı, B. Uzun, and B. Deliktaş, Buckling analysis of restrained nanobeams using strain gradient elasticity, Waves Rand. Compl. Med., vol. 32, no. 6, pp. 2960–2979, 2022. DOI: 10.1080/17455030.2020.1871112.
  • M.A. Bessa, R. Bostanabad, Z. Liu, A. Hu, D.W. Apley, C. Brinson, W. Chen, and W.K. Liu, A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality, Comput. Meth. Appl. Mech. Eng., vol. 320, pp. 633–667, 2017. DOI: 10.1016/j.cma.2017.03.037.
  • S. Burhenne, D. Jacob, and G.P. Henze, Sampling based on Sobol’ sequences for Monte Carlo techniques applied to building simulations. In: Proceedings of Building Simulation, Presented at the 12th Conference of International Building Performance Simulation Association, Sydney, pp. 1816–1823, 2011.
  • J. Santiago, M. Claeys-Bruno, and M. Sergent, Construction of space-filling designs using WSP algorithm for high dimensional spaces, Chemomet. Intell. Lab. Syst., vol. 113, pp. 26–31, 2012. DOI: 10.1016/j.chemolab.2011.06.003.
  • J.M. Hammersley, Monte Carlo methods for solving multivariable problems, Ann. New York Acad. Sci., vol. 86, no. 3, pp. 844–874, 1960. DOI: 10.1111/j.1749-6632.1960.tb42846.x.
  • I.M. Sobol, Uniformly distributed sequences with an additional uniform property, USSR Comput. Mathemat. Mathemat. Phys., vol. 16, no. 5, pp. 236–242, 1976. DOI: 10.1016/0041-5553(76)90154-3.
  • I.Y.M. Sobol, On the distribution of points in a cube and the approximate evaluation of integrals, Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki., vol. 7, no. 4, pp. 784–802, 1967.
  • R.A. Bates, R.J. Buck, E. Riccomagno, and H.P. Wynn, Experimental design and observation for large systems, J. Royal Statist. Soc. Series B., vol. 58, no. 1, pp. 77–94, 1996. DOI: 10.1111/j.2517-6161.1996.tb02068.x.
  • R. Jin, W. Chen, and A. Sudjianto, An efficient algorithm for constructing optimal design of computer experiments, J. Stat. Plan. Inference., vol. 134, no. 1, pp. 268–287, 2005. DOI: 10.1016/j.jspi.2004.02.014.
  • M.D. McKay, R.J. Beckman, and W.J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics., vol. 42, no. 1, pp. 55–61, 2000. DOI: 10.1080/00401706.2000.10485979.
  • A.B. Owen, Orthogonal arrays for computer experiments, integration and visualization, Statistica Sinica., vol. 2, pp. 439–452, 1992.
  • L.G. Grimm, and K.P. Nesselroade, Jr., Statistical Applications for the Behavioral and Social Sciences (No. 175344), John Wiley & Sons, Hoboken, NJ, 2019.
  • J.H. Friedman, Greedy function approximation: a gradient boosting machine, Ann. Statist., vol. 29, no. 5, pp. 1189–1232, 2001. DOI: 10.1214/aos/1013203451.
  • G. Ke, et al., Lightgbm: a highly efficient gradient boosting decision tree, Adv. Neur. Inform. Process. Syst., vol. 30, pp. 3146–3154, 2017.
  • X. Sun, M. Liu, and Z. Sima, A novel cryptocurrency price trend forecasting model based on LightGBM, Finance Res. Lett., vol. 32, pp. 101084, 2020. DOI: 10.1016/j.frl.2018.12.032.
  • T. Chen, and C. Guestrin, Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, San Francisco, CA, pp. 785–794, 2016.
  • H. Zhang, D. Qiu, R. Wu, Y. Deng, D. Ji, and T. Li, Novel framework for image attribute annotation with gene selection XGBoost algorithm and relative attribute model, Appl. Soft Comput., vol. 80, pp. 57–79, 2019. DOI: 10.1016/j.asoc.2019.03.017.
  • Y. Freund and R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139, 1997. DOI: 10.1006/jcss.1997.1504.
  • S.M. Lundberg, and S.I. Lee, A unified approach to interpreting model predictions. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 4765–4774, Long Beach, CA, USA, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.