0
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Acoustic analog-to-digital converter using coupled waveguides in phononic crystals

, ORCID Icon, &
Received 04 Feb 2024, Accepted 01 Jun 2024, Published online: 21 Jul 2024

References

  • M. Mkaoir, H. Ketata, and A. Njeh, Lamb waves propagating in one-dimensional phononic composite and nesting Fibonacci piezoelectric superlattices plate coated on a uniform substrate, Mech. Adv. Mater. Struct., vol. 29, no. 25, pp. 3623–3632, 2021. DOI: 10.1080/15376494.2021.1906470.
  • G. Yang, M. Zhang, J. Du, and X. Chen, Band structure of love wave in a one-dimensional piezoelectric layered phononic crystal with imperfect interface, Mech. Adv. Mater. Struct., vol. 30, no. 6, pp. 1181–1187, 2022. DOI: 10.1080/15376494.2022.2029637.
  • P.J. Wei and Y.P. Zhao, The influence of viscosity on band gaps of 2D phononic crystal, Mech. Adv. Mater. Struct., vol. 17, no. 6, pp. 383–392, 2010. DOI: 10.1080/15376494.2010.483320.
  • Z.Q. Zhan and P.J. Wei, Band gaps of three-dimensional phononic crystal with anisotropic spheres, Mech. Adv. Mater. Struct., vol. 21, no. 4, pp. 245–254, 2013. DOI: 10.1080/15376494.2011.627630.
  • Z. Bian, S. Zhang, and X. Zhou, Band gap manipulation of functionally graded phononic crystal by periodical thermal field, Mechanics of Advanced Materials and Structures, vol. 28, no. 12, pp. 1288–1292, Sep. 2019, doi: 10.1080/15376494.2019.1663321.
  • R.H. Olsson and I.F. El-Kady, Microfabricated phononic crystal devices and applications, Meas. Sci. Technol., vol. 20, no. 1, pp. 012002, 2008. DOI: 10.1088/0957-0233/20/1/012002.
  • F. Wu, Z. Hou, Z. Liu, and Y. Liu, Point defect states in two-dimensional phononic crystals, Phys. Lett., vol. 292, no. 3, pp. 198–202, 2001. DOI: 10.1016/s0375-9601(01)00800-3.
  • S.Z. Aboutalebi and A. Bahrami, A proposal for four channel demultiplexer based on phoxonic crystal ring resonators, Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 6881–6890, 2021. DOI: 10.1080/15376494.2021.1986755.
  • E. Li, Z.C. He, G. Wang, and G.R. Liu, An ultra-accurate numerical method in the design of liquid phononic crystals with hard inclusion, Comput. Mech., vol. 60, no. 6, pp. 983–996, 2017. DOI: 10.1007/s00466-017-1451-y.
  • A. Khelif, A. Choujaa, S. Benchabane, B. Djafari‐Rouhani, and V. Laude, Guiding and bending of acoustic waves in highly confined phononic crystal waveguides, Appl. Phys. Lett., vol. 84, no. 22, pp. 4400–4402, 2004. DOI: 10.1063/1.1757642.
  • Y. Pennec, J.O. Vasseur, B. Djafari‐Rouhani, L. Dobrzyński, and P. Deymier, Two-dimensional phononic crystals: Examples and applications, Surf. Sci. Rep., vol. 65, no. 8, pp. 229–291, 2010. DOI: 10.1016/j.surfrep.2010.08.002.
  • S.-y. Huo, G.-h. Xie, S.-j. Qiu, X.-c. Gong, S.-z. Fan, C.-m. Fu, and Z.-y. Li, Broadband valley-locked waveguide states of elastic wave in topological phononic crystal plates with asymmetric double-sided pillars, Mech. Adv. Mater. Struct., vol. 29, no. 28, pp. 7772–7780, 2022. DOI: 10.1080/15376494.2021.2006838.
  • Y. Li and Q. Huang, Bandgaps and topological interfaces of metabeams with periodic acoustic black holes, Mech. Adv. Mater. Struct., vol. 31, no. 10, pp. 2224–2241, 2022. DOI: 10.1080/15376494.2022.2153950.
  • G. Zhang and Y. Gao, Topological design and magnetic tunability of a novel cross-like holes phononic crystal with low frequency, Mechanics of Advanced Materials and Structures, vol. 29, no. 27, pp. 6144–6153, Sep. 2021, doi: 10.1080/15376494.2021.1972373.
  • Y. Li and Q. Huang, Bandgaps and topological interfaces of metabeams with periodic acoustic black holes, Mechanics of Advanced Materials and Structures, vol. 31, no. 10, pp. 2224–2241, Dec. 2022, doi: 10.1080/15376494.2022.2153950.
  • P. Moradi and A. Bahrami, Three channel GHz-ranged demultiplexer in solid-solid phononic crystals, Chin. J. Phys., vol. 59, pp. 291–297, 2019. DOI: 10.1016/j.cjph.2019.03.005.
  • P. Moradi and A. Bahrami, Design of an optomechanical filter based on solid/solid phoxonic crystals, Journal of Applied Physics, vol. 123, no. 11, pp. 115113-1-5, Mar. 2018, doi: 10.1063/1.5018840.
  • C. Daraio, V.F. Nesterenko, and S. Jin, Strongly nonlinear waves in 3D phononic crystals, AIP Conference Proceedings, Jan, 2004. DOI: 10.1063/1.1780215.
  • H. Gharibi, A. Khaligh, A. Bahrami, and H. B. Ghavifekr, A very high sensitive interferometric phononic crystal liquid sensor, Journal of Molecular Liquids, vol. 296, p. 111878, Dec. 2019, doi: 10.1016/j.molliq.2019.111878.
  • N. Boechler, J. Yang, G. Theocharis, P.G. Kevrekidis, and C. Daraio, Tunable vibrational band gaps in one-dimensional diatomic granular crystals with three-particle unit cells, J. Appl. Phys., vol. 109, no. 7, pp. 074906, 2011. DOI: 10.1063/1.3556455.
  • C. Daraio, V. F. Nesterenko, E. B. Herbold, and S. Jin, Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals, Physical Review E, vol. 73, no. 2, Pt 2, p. 026610, Feb. 2006, doi: DOI: 10.1103/physreve.73.026610.
  • Y. Wang, F. Li, and Y.-S. Wang, Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain, Int. J. Mech. Sci., vol. 106, pp. 357–362, 2016. DOI: 10.1016/j.ijmecsci.2015.12.004.
  • Z.-N. Li, Y. Wang, and Y.-S. Wang, Nonreciprocal phenomenon in nonlinear elastic wave metamaterials with continuous properties, Int. J. Solids Struct., vol. 150, pp. 125–134, 2018. DOI: 10.1016/j.ijsolstr.2018.06.008.
  • Z.-N. Li, Y. Wang, and Y.-S. Wang, Tunable nonreciprocal transmission in nonlinear elastic wave metamaterial by initial stresses, Int. J. Solids Struct., vols. 182–183, pp. 218–235, 2020. DOI: 10.1016/j.ijsolstr.2019.08.020.
  • X. Fang, J. Wen, J. Yin, D. Yu, and Y. Xiao, Broadband and tunable one-dimensional strongly nonlinear acoustic metamaterials: Theoretical study, Phys. Rev., vol. 94, no. 5, 2016. DOI: 10.1103/physreve.94.052206.
  • X. Fang, J. Wen, J. Yin, and D. Yu, Wave propagation in nonlinear metamaterial multi-atomic chains based on homotopy method, AIP Adv., vol. 6, no. 12, 2016. DOI: 10.1063/1.4971761.
  • X. Fang, J. Wen, J. Yin, D. Yu, and Y. Xiao, Broadband and tunable one-dimensional strongly nonlinear acoustic metamaterials: Theoretical study Physical Review, vol. 94, no. 5, p.52206, Nov. 2016, doi: 10.1103/physreve.94.052206.
  • X. Fang, J. Wen, J. Yin, and D. Yu, Wave propagation in nonlinear metamaterial multi-atomi chains based on homotopy method, AIP Advances, vol. 6, no. 12, pp. 121706-121706-19, Dec. 2016, doi: 10.1063/1.4971761.
  • X. Fang, J. Wen, B. Bonello, J. Yin, and D. Yu, Ultra-low and ultra-broad-band nonlinear acoustic metamaterials, Nat. Commun., vol. 8, no. 1, pp. 1288, 2017. DOI: 10.1038/s41467-017-00671-9.
  • H. Ahmadi and A. Rostami, Phononic wave hard limiter, J. Sound Vib., vol. 443, pp. 230–237, 2019. DOI: 10.1016/j.jsv.2018.11.031.
  • F. Motaei and A. Bahrami, Nonlinear elastic switch based on solid-solid phononic crystals, J. Mater. Sci., vol. 55, no. 21, pp. 8983–8991, 2020. DOI: 10.1007/s10853-020-04705-4.
  • F. Motaei and A. Bahrami, Two-channel all-elastic solid-solid phononic switch, Phys. Scr., vol. 95, no. 6, pp. 065703, 2020. DOI: 10.1088/1402-4896/ab8162.
  • F. Motaei, A. Bahrami, and H.B. Ghavifekr, Magnetically controlled three-channel phononic switch, Mech. Adv. Mater. Struct., vol. 29, no. 25, pp. 4478–4486, 2021. DOI: 10.1080/15376494.2021.1931733.
  • J.L. Rose and P.B. Nagy, Ultrasonic waves in solid media, J Acoust Soc Am., vol. 107, no. 4, pp. 1807–1808, 2000. DOI: 10.1121/1.428552.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.