0
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Assessment of new four variables 2D and quasi-3D higher order shear theories for bending analysis of different double curved FG shells

, , , ORCID Icon, , & ORCID Icon show all
Received 15 May 2024, Accepted 01 Jul 2024, Published online: 15 Jul 2024

References

  • R.A. Arciniega, and J.N. Reddy, Large deformation analysis of functionally graded shells, Int. J. Solids Struct., vol. 44, no. 6, pp. 2036–2052, 2007. DOI: 10.1016/j.ijsolstr.2006.08.035.
  • M. Rezaiee-Pajand, E. Arabi, and A.R. Masoodi, Nonlinear analysis of FG-sandwich plates and shells, Aerosp. Sci. Technol., vol. 87, pp. 178–189, 2019. DOI: 10.1016/j.ast.2019.02.017.
  • M. Arefi, Two-dimensional thermoelastic analysis of a functionally graded cylinder for different functionalities by using the higher-order shear deformation theory, J. Appl. Mech. Tech. Phy., vol. 56, no. 3, pp. 494–501, 2015. DOI: 10.1134/S0021894415030207.
  • J. Awrejcewicz, L. Kurpa, and T. Shmatko, Linear and nonlinear free vibration analysis of laminated functionally graded shallow shells with complex plan form and different boundary conditions, Int. J. Non. Linear Mech., vol. 107, pp. 161–169, 2018. DOI: 10.1016/j.ijnonlinmec.2018.08.013.
  • S. Lore, A.S. Deshpande, and B.N. Singh, Nonlinear free vibration analysis of functionally graded plates and shell panels using quasi-3D higher order shear deformation theory, Mech. Adv. Mater. Struct., vol. 31, no. 2, pp. 453–469, 2024. DOI: 10.1080/15376494.2022.2114050.
  • H. Huang, Q. Han, and D. Wei, Buckling of FGM cylindrical shells subjected to pure bending load, Compos. Struct., vol. 93, no. 11, pp. 2945–2952, 2011. DOI: 10.1016/j.compstruct.2011.05.009.
  • M. Arefi, and M.N.M. Allam, Nonlinear responses of an arbitrary FGP circular plate resting on the Winkler-Pasternak foundation, Smart Structures and Systems., vol. 16, no. 1, pp. 81–100, 2015. DOI: 10.12989/sss.2015.16.1.081.
  • C.M. Badiganti, and R. Koona, Harmonic frequency analysis of skewed functionally graded flat and spherical shallow shells, Results Phys., vol. 10, pp. 987–992, 2018. DOI: 10.1016/j.rinp.2018.08.009.
  • D. Punera, and T. Kant, A critical review of stress and vibration analyses of functionally graded shell structures, Compos. Struct., vol. 210, pp. 787–809, 2019. DOI: 10.1016/j.compstruct.2018.11.084.
  • G.M. Kulikov, and S.V. Plotnikova, Three-dimensional nonlinear stress analysis of functionally graded shells subjected to displacement-dependent loads, Mech. Adv. Mater. Struct., vol. 0, pp. 1–16, 2024. DOI: 10.1080/15376494.2024.2342579.
  • F. Allahkarami, S. Satouri, and M.M. Najafizadeh, Mechanical buckling of two-dimensional functionally graded cylindrical shells surrounded by Winkler–Pasternak elastic foundation, Mech. Adv. Mater. Struct., vol. 23, no. 8, pp. 873–887, 2016. DOI: 10.1080/15376494.2015.1036181.
  • F.Z. Zaoui, H.A. Hanifi, L.Y. Abderahman, M.H. Mustapha, T. Abdelouahed, and O. Djamel, Free vibration analysis of functionally graded beams using a higher-order shear deformation theory, MMEP., vol. 4, no. 1, pp. 7–12, 2017. DOI: 10.18280/mmep.040102.
  • M.J. Ebrahimi, and M.M. Najafizadeh, Free vibration analysis of two-dimensional functionally graded cylindrical shells, Appl. Math. Modell., vol. 38, no. 1, pp. 308–324, 2014. DOI: 10.1016/j.apm.2013.06.015.
  • H.Z. Guerroudj, R. Yeghnem, A. Kaci, F.Z. Zaoui, S. Benyoucef, and A. Tounsi, Eigenfrequencies of advanced composite plates using an efficient hybrid quasi-3D shear deformation theory, Smart Struct. Syst., vol. 22, pp. 121–132, 2018. DOI: 10.12989/sss.2018.22.1.121.
  • Y. Belkhodja, D. Ouinas, F.Z. Zaoui, and H. Fekirini, An exponential-trigonometric higher order shear deformation theory (HSDT) for bending, free vibration, and buckling analysis of functionally graded materials (FGMs) plates, Adv. Compos. Lett., vol. 29, pp. 096369351987573, 2020. DOI: 10.1177/0963693519875739.
  • Y. Kiani, A.H. Akbarzadeh, Z.T. Chen, and M.R. Eslami, Static and dynamic analysis of an FGM doubly curved panel resting on the Pasternak-type elastic foundation, Compos. Struct., vol. 94, no. 8, pp. 2474–2484, 2012. DOI: 10.1016/j.compstruct.2012.02.028.
  • Y. Kiani, M. Sadighi, and M.R. Eslami, Dynamic analysis and active control of smart doubly curved FGM panels, Compos. Struct., vol. 102, pp. 205–216, 2013. DOI: 10.1016/j.compstruct.2013.02.031.
  • J.L. Mantari, and C. Guedes Soares, Analysis of isotropic and multilayered plates and shells by using a generalized higher-order shear deformation theory, Compos. Struct., vol. 94, no. 8, pp. 2640–2656, 2012. DOI: 10.1016/j.compstruct.2012.03.018.
  • M. Fadaee, S.R. Atashipour, and S. Hosseini-Hashemi, Free vibration analysis of Lévy-type functionally graded spherical shell panel using a new exact closed-form solution, Int. J. Mech. Sci., vol. 77, pp. 227–238, 2013. DOI: 10.1016/j.ijmecsci.2013.10.008.
  • M. Amabili, A new nonlinear higher-order shear deformation theory with thickness variation for large-amplitude vibrations of laminated doubly curved shells, J. Sound Vib., vol. 332, no. 19, pp. 4620–4640, 2013. DOI: 10.1016/j.jsv.2013.03.024.
  • M. Amabili, Non-linearities in rotation and thickness deformation in a new third-order thickness deformation theory for static and dynamic analysis of isotropic and laminated doubly curved shells, Int. J. Non. Linear Mech., vol. 69, pp. 109–128, 2015. DOI: 10.1016/j.ijnonlinmec.2014.11.026.
  • M. Amabili, A new third-order shear deformation theory with non-linearities in shear for static and dynamic analysis of laminated doubly curved shells, Compos. Struct., vol. 128, pp. 260–273, 2015. DOI: 10.1016/j.compstruct.2015.03.052.
  • M. Amabili, A non-linear higher-order thickness stretching and shear deformation theory for large-amplitude vibrations of laminated doubly curved shells, Int. J. Non. Linear Mech., vol. 58, pp. 57–75, 2014. DOI: 10.1016/j.ijnonlinmec.2013.08.006.
  • M. Amabili, and J.N. Reddy, A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells, Int. J. Non. Linear Mech., vol. 45, no. 4, pp. 409–418, 2010. DOI: 10.1016/j.ijnonlinmec.2009.12.013.
  • S. Kamarian, M. Sadighi, M. Shakeri, and M. Yas, Free vibration response of sandwich cylindrical shells with functionally graded material face sheets resting on Pasternak foundation, J. Sandwich Struct. Mater., vol. 16, no. 5, pp. 511–533, 2014. DOI: 10.1177/1099636214541573.
  • F. Zare Jouneghani, R. Dimitri, M. Bacciocchi, and F. Tornabene, Free vibration analysis of functionally graded porous doubly-curved shells based on the first-order shear deformation theory, Appl. Sci., vol. 7, no. 12, pp. 1252, 2017. DOI: 10.3390/app7121252.
  • Y. Wang, and D. Wu, Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory, Aerosp. Sci. Technol., vol. 66, pp. 83–91, 2017. DOI: 10.1016/j.ast.2017.03.003.
  • M.C. Kiran, S.C. Kattimani, and M. Vinyas, Porosity influence on structural behaviour of skew functionally graded magneto-electro-elastic plate, Compos. Struct., vol. 191, pp. 36–77, 2018. DOI: 10.1016/j.compstruct.2018.02.023.
  • N. Wattanasakulpong, and A. Chaikittiratana, Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: chebyshev collocation method, Meccanica., vol. 50, no. 5, pp. 1331–1342, 2015. DOI: 10.1007/s11012-014-0094-8.
  • N. Shafiei, S.S. Mirjavadi, B. MohaselAfshari, S. Rabby, and M. Kazemi, Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams, Comput. Methods Appl. Mech. Eng., vol. 322, pp. 615–632, 2017. DOI: 10.1016/j.cma.2017.05.007.
  • H. Li, F. Pang, H. Chen, and Y. Du, Vibration analysis of functionally graded porous cylindrical shell with arbitrary boundary restraints by using a semi analytical method, Compos. Part B: Eng., vol. 164, pp. 249–264, 2019. DOI: 10.1016/j.compositesb.2018.11.046.
  • H. Li, F. Pang, Y. Ren, X. Miao, and K. Ye, Free vibration characteristics of functionally graded porous spherical shell with general boundary conditions by using first-order shear deformation theory, Thin Walled Struct., vol. 144, pp. 106331, 2019. DOI: 10.1016/j.tws.2019.106331.
  • F. Tornabene, N. Fantuzzi, and M. Bacciocchi, On the mechanics of laminated doubly-curved shells subjected to point and line loads, Int. J. Eng. Sci., vol. 109, pp. 115–164, 2016. DOI: 10.1016/j.ijengsci.2016.09.001.
  • F. Tornabene, N. Fantuzzi, and M. Bacciocchi, Strong and weak formulations based on differential and integral quadrature methods for the free vibration analysis of composite plates and shells: convergence and accuracy, Eng. Anal. Bound. Elem., vol. 92, pp. 3–37, 2018. DOI: 10.1016/j.enganabound.2017.08.020.
  • A.S. Sayyad, and Y.M. Ghugal, Static and free vibration analysis of laminated composite and sandwich spherical shells using a generalized higher-order shell theory, Compos. Struct., vol. 219, pp. 129–146, 2019. DOI: 10.1016/j.compstruct.2019.03.054.
  • H. Bagheri, Y. Kiani, and M.R. Eslami, Free vibration of FGM conical–spherical shells, Thin. Walled Struct., vol. 160, pp. 107387, 2021. DOI: 10.1016/j.tws.2020.107387.
  • A. Rachid, D. Ouinas, A. Lousdad, F.Z. Zaoui, B. Achour, H. Gasmi, T.A. Butt, and A. Tounsi, Mechanical behavior and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs, Thin. Walled Struct., vol. 172, pp. 108783, 2022. DOI: 10.1016/j.tws.2021.108783.
  • J. Yang, and H.-S. Shen, Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments, J. Sound Vib., vol. 255, no. 3, pp. 579–602, 2002. DOI: 10.1006/jsvi.2001.4161.
  • Y. Wang, R. Zeng, and M. Safarpour, Vibration analysis of FG-GPLRC annular plate in a thermal environment, Mech. Based Des. Struct. Mach., vol. 50, no. 1, pp. 352–370, 2022. DOI: 10.1080/15397734.2020.1719508.
  • F.Z. Zaoui, D. Ouinas, A. Tounsi, J.A. Viña Olay, B. Achour, and M. Touahmia, Fundamental frequency analysis of functionally graded plates with temperature-dependent properties based on improved exponential-trigonometric two-dimensional higher shear deformation theory, Arch Appl. Mech., vol. 91, no. 3, pp. 859–881, 2021. DOI: 10.1007/s00419-020-01793-1.
  • J.L. Mantari, and E.V. Granados, Thermoelastic analysis of advanced sandwich plates based on a new quasi-3D hybrid type HSDT with 5 unknowns, Compos. Part B: Eng., vol. 69, pp. 317–334, 2015. DOI: 10.1016/j.compositesb.2014.10.009.
  • P. Ayoubi, and A. Alibeigloo, Three-dimensional transient analysis of FGM cylindrical shell subjected to thermal and mechanical loading, J. Therm. Stresses., vol. 40, no. 9, pp. 1166–1183, 2017. DOI: 10.1080/01495739.2017.1325720.
  • S. Trabelsi, A. Frikha, S. Zghal, and F. Dammak, A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells, Eng. Struct., vol. 178, pp. 444–459, 2019. DOI: 10.1016/j.engstruct.2018.10.047.
  • J.C. Monge, and J.L. Mantari, Exact solution of thermo-mechanical analysis of laminated composite and sandwich doubly-curved shell, Compos. Struct., vol. 245, pp. 112323, 2020. DOI: 10.1016/j.compstruct.2020.112323.
  • Q.-H. Pham, T.T. Tran, V.K. Tran, P.-C. Nguyen, T. Nguyen-Thoi, and A.M. Zenkour, Bending and hygro-thermo-mechanical vibration analysis of a functionally graded porous sandwich nanoshell resting on elastic foundation, Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 5885–5905, 2022. DOI: 10.1080/15376494.2021.1968549.
  • B.W. Abuteir, and D. Boutagouga, Free-vibration response of functionally graded porous shell structures in thermal environments with temperature-dependent material properties, Acta Mech., vol. 233, no. 11, pp. 4877–4901, 2022. DOI: 10.1007/s00707-022-03351-y.
  • E. Carrera, An assessment of mixed and classical theories for the thermal stress analysis of orthotropic multilayered plates, J. Therm. Stresses., vol. 23, no. 9, pp. 797–831, 2000. DOI: 10.1080/014957300750040096.
  • E. Carrera, Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking, ARCO, vol. 10, no. 3, pp. 215–296, 2003. DOI: 10.1007/BF02736224.
  • E. Carrera, and L. Demasi, Multilayered finite plate element based on reissner mixed variational theorem. Part I: theory, Numer. Methods Eng., vol. 55, no. 2, pp. 191–231, 2002. DOI: 10.1002/nme.492.
  • E. Carrera, and L. Demasi, Multilayered finite plate element based on reissner mixed variational theorem. Part II: numerical analysis, Numer. Methods Eng., vol. 55, no. 3, pp. 253–291, 2002. DOI: 10.1002/nme.493.
  • M. Petrolo, E. Carrera, and G. Giunta, Beam Structures: Classical and Advanced Theories. John Wiley & Sons, New Delhi, 2011.
  • M. Petrolo, E. Zappino, and M. Cinefra, Finite Element Analysis of Structures through Unified Formulation. 1st ed. John Wiley & Sons, New Delhi; 2014.
  • E. Carrera, and M. Petrolo, On the effectiveness of higher-order terms in refined beam theories, Trans. ASME, J. Appl. Mech., vol. 78, pp. 17, pages2010. DOI: 10.1115/1.4002207.
  • E. Carrera, Evaluation of layerwise mixed theories for laminated plates analysis, AIAA J., vol. 36, no. 5, pp. 830–839, 1998. DOI: 10.2514/2.444.
  • E. Carrera, Multilayered Shell Theories Accounting for Layerwise Mixed Description, Part 1: governing Equations, AIAA Journal., vol. 37, no. 9, pp. 1107–1116, 1999. DOI: 10.2514/2.821.
  • E. Carrera, Multilayered shell theories accounting for layerwise mixed description, part 2: numerical evaluations, AIAA Journal., vol. 37, no. 9, pp. 1117–1124, 1999. DOI: 10.2514/2.822.
  • E. Carrera, Developments, ideas, and evaluations based upon Reissner’s mixed variational theorem in the modeling of multilayered plates and shells, Appl. Mech. Rev., vol. 54, no. 4, pp. 301–329, 2001. DOI: 10.1115/1.1385512.
  • E. Carrera, and G. Giunta, Refined beam theories based on a unified formulation, Int. J. Appl. Mech., vol. 02, no. 01, pp. 117–143, 2010. DOI: 10.1142/S1758825110000500.
  • E. Carrera, G. Giunta, P. Nali, and M. Petrolo, Refined beam elements with arbitrary cross-section geometries, Comput. Struct., vol. 88, no. 5-6, pp. 283–293, 2010. DOI: 10.1016/j.compstruc.2009.11.002.
  • C. He, J. Zhu, Y. Hua, D. Xin, and H. Hua, A study on the vibration characteristics of functionally graded cylindrical beam in a thermal environment using the Carrera unified formulation, Mech. Adv. Mater. Struct., vol. 0, pp. 1–13, 2023. DOI: 10.1080/15376494.2023.2242861.
  • M. Khiloun, A.A. Bousahla, A. Kaci, A. Bessaim, A. Tounsi, and S.R. Mahmoud, Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT, Eng. Comput., vol. 36, no. 3, pp. 807–821, 2020. DOI: 10.1007/s00366-019-00732-1.
  • J.N. Reddy, Analysis of functionally graded plates, Int. J. Numer. Meth. Eng., vol. 47, no. 1-3, pp. 663–684, 2000. DOI: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
  • M.S.A. Houari, A. Tounsi, A. Bessaim, and S.R. Mahmoud, A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates, Steel and Composite Structures, vol. 1, pp. 257–276, 2016. 22. : DOI: 10.12989/scs.2016.22.2.257.
  • F.Z. Zaoui, D. Ouinas, and A. Tounsi, New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations, Compos. Part B: Eng., vol. 159, pp. 231–247, 2019. DOI: 10.1016/j.compositesb.2018.09.051.
  • F.Z. Zaoui, D. Ouinas, B. Achour, M. Touahmia, M. Boukendakdji, E.R. Latifee, A.A.A. Al-Naghi, and J.A. Viña Olay, Mathematical approach for mechanical behaviour analysis of FGM plates on elastic foundation, Mathematics., vol. 10, no. 24, pp. 4764, 2022. DOI: 10.3390/math10244764.
  • F.Z. Zaoui, D. Ouinas, A. Tounsi, B. Achour, J.A.V. Olay, and T.A. Butt, Mechanical behaviour analysis of FGM plates on elastic foundation using a new exponential-trigonometric HSDT, Steel Compos. Struct., vol. 47, pp. 551–568, 2023. DOI: 10.12989/scs.2023.47.5.551.
  • A. Younsi, A. Tounsi, F.Z. Zaoui, A.A. Bousahla, and S.R. Mahmoud, Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates, Geomech. Eng., vol. 14, pp. 519–532, 2018. DOI: 10.12989/gae.2018.14.6.519.
  • F.Z. Zaoui, A. Tounsi, and D. Ouinas, Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory, Smart Struct. Syst., vol. 20, pp. 509–524, 2017. DOI: 10.12989/sss.2017.20.4.509.
  • A. Meftah, A. Bakora, F.Z. Zaoui, A. Tounsi, and E.A.A. Bedia, A non-polynomial four variable refined plate theory for free vibration of functionally graded thick rectangular plates on elastic foundation, Steel Compos. Struct., vol. 23, no. 3, pp. 317–330, 2017. DOI: 10.12989/scs.2017.23.3.317.
  • S. Benyoucef, I. Mechab, A. Tounsi, A. Fekrar, H. Ait Atmane, and E.A. Adda Bedia, Bending of thick functionally graded plates resting on Winkler–Pasternak elastic foundations, Mech. Compos. Mater., vol. 46, no. 4, pp. 425–434, 2010. DOI: 10.1007/s11029-010-9159-5.
  • H.-T. Thai, and D.-H. Choi, A refined plate theory for functionally graded plates resting on elastic foundation, Compos. Sci. Technol., vol. 71, no. 16, pp. 1850–1858, 2011. DOI: 10.1016/j.compscitech.2011.08.016.
  • X. Zhao, Y.Y. Lee, and K.M. Liew, Thermoelastic and vibration analysis of functionally graded cylindrical shells, Int. J. Mech. Sci., vol. 51, no. 9-10, pp. 694–707, 2009. DOI: 10.1016/j.ijmecsci.2009.08.001.
  • Y. Kiani, M. Shakeri, and M.R. Eslami, Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation, Acta Mech., vol. 223, no. 6, pp. 1199–1218, 2012. DOI: 10.1007/s00707-012-0629-9.
  • S. Brischetto, and R. Torre, 3D shell model for the thermo-mechanical analysis of FGM structures via imposed and calculated temperature profiles, Aerosp. Sci. Technol., vol. 85, pp. 125–149, 2019. DOI: 10.1016/j.ast.2018.12.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.