0
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Coupled vibration and frequency response of a micropillar-enhanced QCM sensor

ORCID Icon, , , &
Received 27 Jun 2024, Accepted 18 Jul 2024, Published online: 01 Aug 2024

References

  • G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung, Z. Phys., vol. 155, pp. 206–222, 1959. DOI: 10.1007/BF01337937.
  • D. Johannsmann, The Quartz Crystal Microbalance in Soft Matter Research, Springer, Cham, 2015.
  • V.E. Granstaff and S.J. Martin, Characterization of a thickness‐shear mode quartz resonator with multiple nonpiezoelectric layers, J. Appl. Phys., vol. 75, no. 3, pp. 1319–1329, 1994. DOI: 10.1063/1.356410.
  • N. Liu, J. Yang, and J. Wang, Shear vibration of a crystal plate carrying an array of microbeams, Philos. Mag. Lett., vol. 91, no. 9, pp. 572–581, 2011. DOI: 10.1080/09500839.2011.597359.
  • J. Wang, L. Yang, Q. Pan, M.C. Chao, and J. Du, Resonant frequency function of thickness-shear vibrations of rectangular crystal plates, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 58, no. 5, pp. 1102–1107, 2011. DOI: 10.1109/TUFFC.2011.1911.
  • C. Zhang, N. Liu, J. Yang, and W. Chen, Thickness-shear vibration of AT-cut quartz plates carrying finite-size particles with rotational degree of freedom and rotatory inertia, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 58, no. 3, pp. 666–670, 2011. DOI: 10.1109/TUFFC.2011.1851.
  • Y. Hu, H. Hu, B. Luo, H. Xue, J. Xie, and J. Wang, Frequency shift of a crystal quartz resonator in thickness-shear modes induced by an array of hemispherical material units, IEEE Trans. Ultrason. Ferroelect. Freq. Control., vol. 60, no. 8, pp. 1777–1782, 2013. DOI: 10.1109/TUFFC.2013.2758.
  • J. Yang, Vibration of Piezoelectric Crystal Plates, World Scientific, Singapore, 2013.
  • P. Li, F. Jin, Q. Sun, and J. Ma, The application of second-order approximation of Taylor series in thickness shear vibration analysis of quartz crystal microbalances, Ultrasonics., vol. 58, no. pp. 96–103, 2015. DOI: 10.1016/j.ultras.2014.12.007.
  • X. Xie, L. Kong, J. Zhang, Y. Wang, Y. Hu, and X. Chen, Coupled analysis on the thickness-shear vibrations of a quartz plate resonator covered with micro-beams immersed in inviscid liquid and computation of the induced frequency-shift by the surface loadings, Mech. Adv. Mater. Struct., vol. 23, no. 7, pp. 758–763, 2016. DOI: 10.1080/15376494.2015.1029164.
  • L. Yuan, R. Wu, J. Du, J. Wang, and J. Yang, Thickness-shear and thickness-twist vibrations of rectangular quartz crystal plates with nonuniform thickness, Mech. Adv. Mater. Struct., vol. 24, no. 11, pp. 937–942, 2017. DOI: 10.1080/15376494.2016.1196796.
  • Y. Chen, R. Wu, L. Wang, H. Jing, J. Du, Y. Hu, G. Li, and J. Wang, An analysis of nonlinear thickness-shear vibrations of quartz crystal plates using the two-dimensional finite element method, Mech. Adv. Mater. Struct., vol. 25, no. 5, pp. 395–406, 2018. DOI: 10.1080/15376494.2017.1285454.
  • P. Li, and F. Jin, The investigation of trapped thickness shear modes in a contoured AT-cut quartz plate using the power series expansion technique, J. Phys. D: appl. Phys., vol. 51, no. 1, pp. 015301, 2018. DOI: 10.1088/1361-6463/aa9919.
  • R. Wu, W. Zhang, T. Ma, J. Du, and J. Wang, Thickness-shear frequencies of an infinite quartz plate with graded material properties across the thickness, Acta Mech. Solida Sin., vol. 33, no. 3, pp. 361–367, 2020. DOI: 10.1007/s10338-019-00157-9.
  • X. Xie, B. Zheng, W. Huang, and J. Zhou, On thickness-shear vibration and frequency shift of a quartz crystal resonator carrying an array of micro-beams adhered with tip nano-particles, Mech. Adv. Mater. Struct., vol. 28, no. 16, pp. 1714–1720, 2021. DOI: 10.1080/15376494.2019.1702236.
  • R. Wu, Y. Guo, L. Xie, S.-Y. Pao, Y.-K. Yong, and J. Wang, The acceleration effect on the vibration frequency of thickness-shear mode of an infinite isotropic plate, Mech. Adv. Mater. Struct., vol. 29, no. 17, pp. 2484–2488, 2022. DOI: 10.1080/15376494.2020.1866126.
  • P. Wang, J. Su, W. Dai, G. Cernigliaro, and H. Sun, Ultrasensitive quartz crystal microbalance enabled by micropillar structure, Appl. Phys. Lett., vol. 104, no. 4, pp. 043504, 2014. DOI: 10.1063/1.4862258.
  • P. Wang, J. Su, C.-F. Su, W. Dai, G. Cernigliaro, and H. Sun, An ultrasensitive quartz crystal microbalance-micropillars based sensor for humidity detection, J. Appl. Phys., vol. 115, no. 22, pp. 224501, 2014. DOI: 10.1063/1.4880316.
  • P. Wang, J. Su, L. Gong, M. Shen, M. Ruths, and H. Sun, Numerical simulation and experimental study of resonance characteristics of QCM-P devices operating in liquid and their application in biological detection, Sens. Actuators B., vol. 220, pp. 1320–1327, 2015. DOI: 10.1016/j.snb.2015.07.024.
  • M.A.M. Kashan, V. Kalavally, H.W. Lee, and N. Ramakrishnan, Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors, J. Phys. D Appl. Phys., vol. 49, no. 19, pp. 195303, 2016. DOI: 10.1088/0022-3727/49/19/195303.
  • P. Wang, J. Su, M. Shen, M. Ruths, and H. Sun, Detection of liquid penetration of a micropillar surface using the quartz crystal microbalance, Langmuir, vol. 33, no. 2, pp. 638–644, 2017. DOI: 10.1021/acs.langmuir.6b03640.
  • J. Su, H. Esmaeilzadeh, F. Zhang, Q. Yu, G. Cernigliaro, J. Xu, and H. Sun, An ultrasensitive micropillar-based quartz crystal microbalance device for real-time measurement of protein immobilization and protein-protein interaction, Biosens. Bioelectron., vol. 99, pp. 325–331, 2018. DOI: 10.1016/j.bios.2017.07.074.
  • J. Su, H. Esmaeilzadeh, P. Wang, S. Ji, M. Inalpolat, M. Charmchi, and H. Sun, Effect of wetting states on frequency response of a micropillar-based quartz crystal microbalance, Sens. Actuators A., vol. 286, pp. 115–122, 2019. DOI: 10.1016/j.sna.2018.12.012.
  • J. Movilli, R.W. Kolkman, A. Rozzi, R. Corradini, L.I. Segerink, and J. Huskens, Increasing the sensitivity of electrochemical DNA detection by a micropillar-structured biosensing surface, Langmuir, vol. 36, no. 16, pp. 4272–4279, 2020. DOI: 10.1021/acs.langmuir.0c00144.
  • I.C. Esfahani, and H. Sun, A droplet-based micropillar-enhanced acoustic wave (µPAW) device for viscosity measurement, Sens. Actuators A., vol. 350, pp. 114121, 2023. DOI: 10.1016/j.sna.2022.114121.
  • N.A. Tehrani, I.C. Esfahani, and H. Sun, Simultaneous humidity and temperature measurement with micropillar enhanced QCM sensors, Sens. Actuators A., vol. 366, pp. 115039, 2024. DOI: 10.1016/j.sna.2024.115039.
  • L. Kong, X. Xie, J. Zhang, Y. Wang, and Y. Hu, On the interaction between a quartz crystal resonator and an array of micro-beams in thickness-shear vibrations, Acta Mech. Solida Sin., vol. 28, no. 5, pp. 464–470, 2015. DOI: 10.1016/S0894-9166(15)30042-2.
  • L.-C. Kong, and Y.-T. Hu, Effect of strain-gradients of surface micro-beams on frequency-shift of a quartz crystal resonator under thickness-shear vibrations, Acta Mech. Sin., vol. 31, no. 5, pp. 647–652, 2015. DOI: 10.1007/s10409-015-0474-x.
  • X. Xie, L. Kong, Y. Wang, J. Zhang, and Y. Hu, Coupled vibrations and frequency shift of compound system consisting of quartz crystal resonator in thickness-shear motions and micro-beam array immersed in liquid, Appl. Math. Mech. Engl. Ed., vol. 36, no. 2, pp. 225–232, 2015. DOI: 10.1007/s10483-015-1902-7.
  • C. Luo, J. Xie, and Y. Hu, Influence of surface micro-beams with large deflection on the resonance frequency of a quartz crystal resonator in thickness-shear mode vibrations, Theor. Appl. Mech. Lett., vol. 7, no. 2, pp. 72–75, 2017. DOI: 10.1016/j.taml.2016.12.003.
  • X. Xie, J. Xie, X. Chen, and Y. Hu, On modeling of a thickness-shear vibrating quartz crystal plate attached with micro-beams immersed in liquid with considering couple stress effects, Z. Angew. Math. Mech., vol. 97, no. 2, pp. 190–201, 2017. DOI: 10.1002/zamm.201600092.
  • X. Xie, J. Xie, W. Luo, and Z. Wu, Electromechanical coupling and frequency characteristics of a quartz crystal resonator covered with micropillars, J. Vib. Acoust., vol. 141, no. 4, pp. 044501, 2019. DOI: 10.1115/1.4042936.
  • B. Zimmermann, R. Lucklum, P. Hauptmann, J. Rabe, and S. Büttgenbach, Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis, Sens. Actuators B., vol. 76, no. 1-3, pp. 47–57, 2001. DOI: 10.1016/S0925-4005(01)00567-6.
  • R. Meftah, and Y. Meyer, Equivalent-circuit model for quartz resonators effects of finite element analysis, acceleration, and mass loading, Mech. Adv. Mater. Struct., vol. 20, no. 9, pp. 774–790, 2013. DOI: 10.1080/15376494.2012.676716.
  • H.F. Tiersten, and R. Mindlin, Forced vibrations of piezoelectric crystal plates, Quart. Appl. Math., vol. 20, no. 2, pp. 107–119, 1962. DOI: 10.1090/qam/99964.
  • C.E. Reed, K.K. Kanazawa, and J.H. Kaufman, Physical description of a viscoelastically loaded AT‐cut quartz resonator, J. Appl. Phys., vol. 68, no. 5, pp. 1993–2001, 1990. DOI: 10.1063/1.346548.
  • J.A. Mitchell, and J.N. Reddy, A refined hybrid plate theory for composite laminates with piezoelectric laminae, Int. J. Solids Struct., vol. 32, no. 16, pp. 2345–2367, 1995. DOI: 10.1016/0020-7683(94)00229-P.
  • J.N. Reddy, Theory and Analysis of Elastic Plates and Shells, CRC Press, Boca Raton, FL, 1999.
  • J.N. Reddy, Theories and Analyses of Beams and Axisymmetric Circular Plates. CRC Press, Boca Raton, FL, 2022.
  • E. Carrera, A. Büttner, and P. Nali, Mixed elements for the analysis of anisotropic multilayered piezoelectric plates, J. Intell. Mater. Syst. Struct., vol. 21, no. 7, pp. 701–717, 2010. DOI: 10.1177/1045389X10364864.
  • E. Carrera, S. Brischetto, and P. Nali, Plates and Shells for Smart Structures: Classical and Advanced Theories for Modeling and Analysis¸ John Wiley & Sons, New York, 2011.
  • M. Cinefra, A. Lamberti, A.M. Zenkour, and E. Carrera, Axiomatic/asymptotic technique applied to refined theories for piezoelectric plates, Mech. Adv. Mater. Struct., vol. 22, no. 1–2, pp. 107–124, 2015. DOI: 10.1080/15376494.2014.908043.
  • E. Zappino, and E. Carrera, Thermo-piezo-elastic analysis of amplified piezoceramic actuators using a refined one-dimensional model, J. Intell. Mater. Syst. Struct., vol. 29, no. 17, pp. 3482–3494, 2017. DOI: 10.1177/1045389X17721026.
  • E. Carrera, and V.V. Zozulya, Carrera Unified Formulation (CUF) for the composite plates and shells of revolution. Layer-wise models, Compos. Struct., vol. 334, pp. 117936, 2024. DOI: 10.1016/j.compstruct.2024.117936.
  • W. Weaver, Jr, S.P. Timoshenko, and D.H. Young, Vibration Problems in Engineering, John Wiley & Sons, New York, 1991.
  • I.A. Karnovsky, O. Lebed, and I. Karnovskii, Non-classical Vibrations of Arches and Beams, McGraw-Hill Professional Publishing, New York, 2004.
  • L. Majkut, Free and forced vibration of Timoshenko beams described by single difference equation, J. Theor. Appl. Mech., vol. 47, no. 1, pp. 193–210, 2009.
  • M. Li, P. Wei, and X. Zhou, Wave propagation and free vibration of a Timoshenko beam mounted on the viscoelastic Pasternak foundation modeled by fraction-order derivatives, Mech. Time-Depend. Mater., vol. 27, no. 4, pp. 1209–1223, 2023. DOI: 10.1007/s11043-022-09541-4.
  • H. Zhou, M. Ling, Y. Yin, H. Hu, and S. Wu, Exact vibration solution for three versions of Timoshenko beam theory: a unified dynamic stiffness matrix method, J. Vib. Control., 2023. DOI: 10.1177/10775463231215408.
  • J. Yang, An Introduction to the Theory of Piezoelectricity, Springer, Cham, 2005.
  • J.R. Hutchinson, Shear coefficients for Timoshenko beam theory, J. Appl. Mech., vol. 68, no. 1, pp. 87–92, 2000. DOI: 10.1115/1.1349417.
  • S.J. Martin, H.L. Bandey, R.W. Cernosek, A.R. Hillman, and M.J. Brown, Equivalent-Circuit Model for the Thickness-Shear Mode Resonator with a Viscoelastic Film Near Film Resonance, Anal. Chem., vol. 72, no. 1, pp. 141–149, 2000. DOI: 10.1021/ac9908290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.