415
Views
78
CrossRef citations to date
0
Altmetric
Research Article

A Hierarchical Clustering Methodology for the Estimation of Toxicity

, , , &
Pages 251-266 | Received 16 Oct 2007, Accepted 05 Nov 2007, Published online: 09 Oct 2008

REFERENCES

  • Basak S. C., Mills D. R., Balaban A. T., Gute B. D. Prediction of mutagenicity of aromatic and heteroaromatic amines from structure: a hierarchical QSAR approach. J. Chem. Inf. Comput. Sci. 2001; 41: 671–678
  • Belsley D. A., Kuh E., Welsch R. E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York 1980; 157
  • Cash G. G. Prediction of the genotoxicity of aromatic and heteroaromatic amines using electrotopological state indices. Mutat. Res. 2001; 491: 31–37
  • Cherkasov A. Inductive QSAR descriptors Distinguishing compounds with antibacterial activity by artificial neural networks. Int. J. Mol. Sci. 2005; 6: 63–86
  • Contrera J. F., Matthews E. J., Benz R. D. Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices. Reg. Toxicol. Pharmacol. 2003; 38: 243–259
  • Cronin M. T. D., Aptula A. O., Duffy J. C., Netzeva T. I., Rowe P. H., Valkova I. V., Schultz T. W. Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis. Chemosphere 2002; 49: 1201–1221
  • Cronin M. T. D., Schultz T. W. Structure-toxicity relationships for phenols to Tetrahymena pyriformis. Chemosphere 1996; 32(8)1453–1468
  • Damborski J., Schultz T. W. Comparison of the QSAR models for toxicity and biodegradability of anilines and phenols. Chemosphere 1997; 34(2)429–446
  • Daylight Chemical Information Systems, Inc. Simplified Molecular Input Line Entry System. 2006, http://www.daylight.com/smiles/index.html. Accessed January 24, 2008.
  • Edusoft-LC. Molconn-z Version 4.0. 2006, http://www.edusoft-lc.com/molconn./ Accessed January 24, 2008
  • Eldred D. V., Weikel C. L., Jurs P. C., Kaiser K. L. E. Prediction of fathead minnow acute toxicity of organic compounds from molecular structure. Chem. Res. Toxicol. 1999; 12: 670–678
  • Elsevier MDL. CTFile Formats. 2005, http://www.mdl.com/solutions/white_papers/ctfile_formats.jsp. Accessed January 24, 2008.
  • Elsevier MDL. MDL QSAR Version 2.2. 2006, http://www.mdl.com/products/predictive/qsar/index.jsp. Accessed January 24, 2008.
  • Eriksson L., Jaworska J. S., Worth A. P., Cronin M. T. D., McDowell R. M., Gramatica P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect. 2003; 111(10)1361–1375
  • Fatemi M. H., Jalali-Heravi M., Konuze E. Prediction of bioconcentration factor using genetic algorithm and artificial neural network. Anal. Chim. Acta 2003; 486: 101–108
  • Faucon J. C., Bureau R., Faisant J., Briens F., Rault S. Prediction of the fish acute toxicity from heterogeneous data coming from notification files. Chemosphere 1999; 38: 3261–3276
  • Ghose A. K., Viswanadhan V. N., Wendoloski J. J. Prediction of hydrophilic (lipophilic) properties of small organic molecules using fragmental methods: an analysis of ALOGP and CLOGP Methods. J. Phys. Chem. 1998; 102: 3762–3772
  • Gough J. D., Hall L. H. Modeling the toxicity of amide herbicides using the electrotopological state. Environ. Toxicol. Chem. 1999; 18: 1069–1075
  • Gramatica P., Corradi M., Consonni V. Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors. Chemosphere 2000; 41: 763–777
  • Gramatica P., Pilutti P., Papa E. Predicting the NO3 radical tropospheric degradability of organic pollutants by theoretical molecular descriptors. Atmospheric Environ. 2003; 37: 3115–3124
  • Gramatica P., Vighi M., Consolaro F., Todeschini R., Finizio A., Faust M. QSAR approach for the selection of congeneric compounds with a similar toxicological mode of action. Chemosphere 2001; 42: 873–883
  • Hall L. H., Kier L. B. The molecular connectivity chi indices and kappa shape indices in structure-property relations. Reviews of Computational Chemistry, D. Boyd, K. Lipkowitz. VCH Publishers, Inc., New York 1991; 367–422
  • Hall L. H., Kier L. B. Molecular connectivity chi indices for database analysis and structure-property modeling. Topological indices and related descriptors in QSAR and QSPR, J. Devillers, A. T. Balaban, ReadingUK: Gordon & Breach 1999
  • He L., Jurs P. C. Assessing the Reliability of QSAR model's predictions. J. Mol. Graphics Model. 2005; 23: 503–523
  • Hosoya H. Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jap. 1971; 44: 2332–2339
  • Itskowitz P., Tropsha A. k nearest neighbors QSAR modeling as a variational problem: theory and applications. J. Chem. Infor. Model. 2005; 45: 777–785
  • Kaiser K. L. E., Niculescu S. P. Using probabilistic neural networks to model the toxicity of chemicals to the fathead minnow (Pimephales promelas): a study based on 865 chemicals. Chemosphere 1999; 38: 3237–3245
  • Katritzky A. R., Karelson M., Putrukhin R. The CODESSA PRO project: Comprehensive Descriptors for Structural and Statistical Analysis 2007, http://www.codessa-pro.com/. Accessed January 25, 2008
  • Kier L. B., Hall L. H. Molecular Connectivity in Chemistry and Drug Research. Academic Press Inc, New York 1976
  • Kier L. B., Hall L. H. Molecular Connectivity in Structure-Activity Analysis. John Wiley and Sons, New York 1986
  • Kutner M. H., Nachtsheim C. J., Neter J., Li W. Applied Linear Statistical Models. McGraw-Hill, New York 2004
  • Liu S., Cao C., Li Z. Approach to estimation and prediction for normal boiling point (NBP) of alkanes based on a novel molecular distance edge (MDE) vector, λ. J. Chem. Inf. Comput. Sci. 1998; 38: 387–394
  • Louis Pasteur University. ISIDA Project. 2007, http://infochim.u-strasbg. fr/recherche/isida/index.php. Accessed January 25, 2008.
  • Martin T. M., Young D. M. Prediction of the acute toxicity (96-h LC50) of organic compounds ti the fathead minnow (Pimephales promelas) using a group contribution method. Chem. Res. Toxicol. 2001; 14: 1378–1385
  • Montgomery D. C. Introduction to Linear Regression Analysis. John Wiley and Sons, New York 1982; 141: 143
  • Öberg T. A general structure-property relationship to predict the enthalpy of vaporisation at ambient temperatures. SAR QSAR Environ. Res. 2007; 18: 127–139
  • Papa E., Villa F., Gramatica P. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow). J. Chem. Infor. Model. 2005; 45: 1256–1266
  • Pirselova K., Balaz S., Schultz T. W. Model-based QSAR for ionizable compounds: toxicity of phenols against Tetrahymena pyriformis. Arch. Environ. Contam. Toxicol. 1996; 30(2)170–177
  • Romesburg H. C. Cluster Analysis for Researchers. Lifetime Learning Publications, BelmontCA 1984
  • Russom C. L., Bradbury S. P., Broderius S. J., Hammermeister D. E., Drummond R. A. Predicting modes of toxic action from chemical structure: acute toxicity in the Fathead minnow (Pimephales Promelas). Environ. Toxicol. Chem. 1997; 16: 948–967
  • Schultz T. W. TETRATOX: Tetrahymena pyriformis population growth impairment endpoint—a surrogate for fish lethality. Toxicol. Methods 1997; 7: 289–309
  • Schultz T. W. Tetratox. 2007, http://www.vet.utk.edu/TETRATOX/. Accessed January 25, 2008.
  • Schultz T. W., Bearden A. P., Jaworska J. S. A novel approach for estimating the toxicity of phenols. SAR QSAR Environ. Res. 1996; 5(2)99–112
  • Schultz T. W., Netzeva T. I. Development and evaluation of QSARs for ecotoxic endpoints: the benzene response-surface model for tetrahymena toxicity. Modeling Environmental Fate and Toxicity, M. T. D. Cronin, D. J. Livingstone. CRC Press, Boca RatonFL 2004
  • Steinbeck C., Han Y., Kuhn S., Horlacher O., Luttmann E., Willighagen E. The Chemistry Development Kit (CDK): an open-source Java library for chemo- and bioinformatics. J. Chem. Inf. Comput. Sci. 2003; 43: 493–500
  • Sutter J. M., Dixon S. L., Jurs P. C. Automated descriptor selection for quantitative structure-activity relationships using generalized simulated annealing. J. Chem. Inf. Comput. Sci. 1995; 35: 77–84
  • Talete. Dragon Version 5.4. 2006, http://www.talete.mi.it/dragon_net.htm. Accessed January 25, 2008.
  • Todeschini R., Consonni V. Handbook of Molecular Descriptors. Wiley-VCH, WeinheimGermany 2000
  • Todeschini R., Vighi M., Finizio A., Gramatica P. 3D modelling and prediction by WHIM descriptors. Part 8. Toxicity and physicochemical properties of environmental priority chemicals by 2D-TI and 3D WHIM descriptors. SAR QSAR Environ. Res. 1997; 7: 173–193
  • U.S. Environmental Protection Agency. ECOSAR, version 0.99 g. 2000, http://www.epa.gov/oppt/newchems/tools/21ecosar.htm. Accessed January 25, 2008.
  • U.S. Environmental Protection Agency. TSCA §5 New Chemicals Program. 2007, http://www.epa.gov/oppt/newchems/index.htm. Accessed January 25, 2008.
  • Verhaar H. J. M., van Leeuwen C. J., Hermens J. L. M. 1: Structure-activity relationships for prediction of aquatic toxicity. Chemosphere 1992; 25: 471–491
  • Virtual Computational Chemistry Laboratory. Associative Neural Network. 2007, http://www.vcclab.org/lab/asnn/. Accessed January 25, 2008.
  • Viswanadhan V. N., Ghose A. K., Revankar G. R., Robins R. K. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J. Chem. Inf. Comput. Sci. 1989; 29: 163–172
  • Waikato Environment for Knowledge Analysis WEKA. 2007, http://www.cs.waikato.ac.nz/~ml/weka/ Accessed January 25, 2008.
  • Wang R., Fu Y., Lai L. A new atom-additive method for calculating partition coefficients. J. Chem. Inf. Comput. Sci. 1997; 37: 615–621
  • Witten I. H. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco 2005
  • Xue C. X., Zhang R. S., Liu H. X., Yao X. J., Liu M. C., Hu Z. D., Fan B. T. An accurate QSPR study of O-H bond dissociation energy in substituted phenols based on support vector machines. J. Chem. Inf. Comput. Sci. 2004; 44: 669–677
  • Zhang S., Golbraikh A., Oloff S., Kohn H., Tropsha A. A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models. J. Chem. Inf. Model 2006; 46: 1984–1995
  • Zheng W. F., Tropsha A. Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle. J. Chem. Inf. Comput. Sci. 2000; 40: 185–194
  • Zhu H., Tropsha A., Fourches D., Varnek A., Papa E., Gramatica P., Öberg T., Dao P., Cherkasov A., Tetko I. G. Combinational QSAR model of chemical toxicants tested against. Tetrahymena pyriformis. J. Chem. Inf. Model. 2008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.