149
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Hepatic and skeletal muscle mitochondrial toxicity of chitosan oligosaccharides of normal and diabetic rats

, , , , &
Pages 650-657 | Received 20 Jun 2016, Accepted 07 Aug 2016, Published online: 28 Oct 2016

References

  • Adam-Vizi V, Chinopoulos C. (2006). Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27:639–45.
  • Bhattacharya SK, Thakar JH, Johnson PL, Shanklin DR. (1991). Isolation of skeletal muscle mitochondria from hamsters using an ionic medium containing ethylenediaminetetraacetic acid and nagarse. Anal Biochem 192:344–9.
  • Bonnard C, Durand A, Peyrol S, et al. (2008). Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 118:789–800.
  • Brautigan DL, Ferguson-Miller S, Margoliash E. (1978). Mitochondrial cytochrome c: preparation and activity of native and chemically modified cytochromes c. Meth Enzymol 53:128–64.
  • Brownlee M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–20.
  • Chiang MT, Yao HT, Chen HC. (2000). Effect of dietary chitosans with different viscosity on plasma lipids and lipid peroxidation in rats fed on a diet enriched with cholesterol. Biosci Biotechnol Biochem 64:965–71.
  • Estabrook RW. (1967). Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. Meth Enzymol 10:41–7.
  • Fridlyand LE, Philipson LH. (2005). The nutrient paradox: oxidative stress in pancreatic β-cells. In Opara E, ed. Nutrition and diabetes: pathophysiology and management. Boca Raton (FL), London, New York: CRC Taylor & Francis, 303–19.
  • Gazotti P, Malmstron K, Crompton M. (1979). Preparation and assay of animal mitochondria and submitochondrial vesicles. In Carafoli E, Semenza G, eds. Membrane biochemistry: a laboratory manual on transport and bioenergetics. Berlin, Heidelberg, New York: Springer, 62–76.
  • Gornall AG, Bardawill CJ, David MM. (1949). Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–66.
  • Goto Y, Kakizaki M, Masaki N. (1975). Spontaneous diabetes produced by selective breeding of normal Wistar rats. Proc Japan Acad 51:80–5.
  • Guariguata L, Whiting DR, Hambleton I, et al. (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–49.
  • Guilherme A, Virbasius JV, Puri V, Czech MP. (2008). Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9:367–77.
  • Hayashi K, Ito M. (2002). Antidiabetic action of low molecular weight chitosan in genetically obese diabetic KK-Ay mice. Biol Pharm Bull 25:188–92.
  • Huang M, Khor E, Lim LY. (2004). Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res 21:344–53.
  • Jeon YJ, Kim SK. (2001). Potential immuno-stimulating effect of antitumoral fraction of chitosan oligosaccharides. J Chitin Chitosan 6:163–7.
  • Jørgensen W, Jelnes P, Rud KA, et al. (2012). Progression of type 2 diabetes in GK rats affects muscle and liver mitochondria differently: pronounced reduction of complex II flux is observed in liver only. Am J Physiol Endocrinol Metab 303:E515–23.
  • Kamo N, Muratsugu M, Hongoh R, Kobatake Y. (1979). Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–21.
  • Kelley DE, He J, Menshikova EV, Ritov VB. (2002). Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–50.
  • Kim SK, Jeon YJ, Zan HC. (2000). Antibacterial effect of chitooligosaccharides with different molecular weights prepared using membrane bioreactor. J Chitin Chitosan 5:1–8.
  • Kim SK, Jeon YJ. (2002). Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrane reactor system. J Microbiol Biotechnol 12:503–7.
  • Kimura K, Toyota T, Kakizaki M, et al. (1982). Impaired insulin secretion in the spontaneous diabetes rats. Tohoku J Exp Med 137:453–9.
  • Kondo Y, Nakatani A, Hayashi K, Ito M. (2000). Low molecular weight chitosan prevents the progression of low dose streptozotocin-induced slowly progressive diabetes mellitus in mice. Biol Pharm Bull 23:1458–64.
  • Lee HW, Park YS, Choi JW, et al. (2003). Antidiabetic effects of chitosan oligosaccharides in neonatal streptozotocin-induced noninsulin-dependent diabetes mellitus in rats. Biol Pharm Bull 26:1100–3.
  • Liu B, Liu WS, Han BQ, Sun YY. (2007). Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocin-induced diabetic rats. World J Gastroenterol 13:725–31.
  • Liu J, Zhang J, Xia W. (2008). Hypocholesterolaemic effects of different chitosan samples in vitro and in vivo. Food Chem 107:419–25.
  • Liu SH, Chang YH, Chiang MT. (2010). Chitosan reduces gluconeogenesis and increases glucose uptake in skeletal muscle in streptozotocin-induced diabetic rats. J Agric Food Chem 58:5795–800.
  • Lowell BB, Shulman GI. (2005). Mitochondrial dysfunction and type 2 diabetes. Science 307:384–7.
  • Mendis E, Kim MM, Rajapakse N, Kim SK. (2007). An in vitro cellular analysis of the radical scavenging efficacy of chitooligosaccharides. Life Sci 80:2118–27.
  • Mootha VK, Lindgren CM, Eriksson KF, et al. (2003). PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature 34:267–73.
  • Muoio DM, Newgard CB. (2008). Mechanisms of disease:Molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 9:193–205.
  • Palmeira CM, Moreno AJ, Madeira V. (1994). Interactions of herbicides 2,4-D and dinoseb with liver mitochondrial bioenergetics. Toxicol Appl Pharmacol 127:50–7.
  • Palmeira CM, Wallace KB. (1997). Benzoquinone inhibits the voltage-dependent induction of the mitochondrial permeability transition caused by redox-cycling naphthoquinones. Toxicol Appl Pharmacol 143:338–47.
  • Patti ME, Butte AJ, Crunkhorn S, et al. (2003). Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–71.
  • Petersen KF, Dufour S, Befroy D, et al. (2004). Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–71.
  • Prashanth K, Tharanathan RN. (2005). Depolymerized products of chitosan as potent inhibitors of tumor-induced angiogenesis. Biochim Biophys Acta 1722:22–9.
  • Rolo AP, Oliveira PJ, Moreno AJ, Palmeira CM. (2000). Bile acids affect liver mitochondrial bioenergetics: possible relevance for cholestasis therapy. Toxicol Sci 57:177–85.
  • Rolo AP, Palmeira CM. (2006). Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 212:167–78.
  • Singer TP. (1974). Determination of the activity of succinate, NADH, choline, and alpha-glycerophosphate dehydrogenases. Methods Biochem Anal 22:123–75.
  • Stocchi V, Cucchiarini L, Canestrari F, et al. (1987). A very fast ion-pair reversed-phase HPLC method for the separation of the most significant nucleotides and their degradation products in human red blood cells. Anal Biochem 167:181–90.
  • Teodoro JS, Duarte FV, Gomes AP, et al. (2013). Berberine reverts hepatic mitochondrial dysfunction in high-fat fed rats: a possible role for SirT3 activation. Mitochondrion 13:1–10.
  • Varela AT, Gomes AP, Simões AM, et al. (2008). Indirubin-3′-oxime impairs mitochondrial oxidative phosphorylation and prevents mitochondrial permeability transition induction. Toxicol Appl Pharmacol 233:179–85.
  • Wang P, Jiang X, Jiang Y, et al. (2007a). In vitro antioxidative activities of three marine oligosaccharides. Nat Prod Res 21:646–54.
  • Wang Y, Zhou P, Pan X, et al. (2007b). Antimicrobial effect of chitooligosaccharides produced by chitosanase from Pseudomonas CUY8. Asia Pac J Clin Nutr 16:174–7.
  • Yang BG, Lee J, Kim SH, Jeon YJ. (2004). Antimicrobial effect of chitosan and chitooligosaccharides against bacterial diseases of cultured flounder. J Korean Soc Food Sci Nutr 33:236–43.
  • Yao HT, Chiang MT. (2002). Plasma lipoprotein cholesterol in rats fed a diet enriched in chitosan and cholesterol. J Nutr Sci Vitaminol (Tokyo) 48:379–83.
  • Yao HT, Huang SY, Chiang MT. (2008). A comparative study on hypoglycemic and hypocholesterolemic effects of high and low molecular weight chitosan in streptozotocin-induced diabetic rats. Food Chem Toxicol 46:1525–34.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.