175
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Toxicological effects of three types of silver nanoparticles and their salt precursors acting on human U-937 and HL-60 cells

, &
Pages 58-71 | Received 04 Aug 2016, Accepted 10 Oct 2016, Published online: 15 Nov 2016

References

  • Ahamed M, Karns M, Goodson M, et al. (2008). DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–10.
  • Arora S, Jain J, Rajwade JM, Paknikar KM. (2008). Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol Lett 179:93–100.
  • AshaRani PV, Low KahMun G, Hande MP, Valiyaveettil S. (2009). Cytotoxicity and genotoxicityof silver nanoparticles in human cells. ACS Nano 3:279–90.
  • Barbasz A, Oćwieja M. (2016). Gold nanoparticles and ions – friends or foes? As they are seen by human cells U-937 and HL-60. J Exp Nanosci 11:564–80.
  • Barbasz A, Oćwieja M, Barbasz J. (2015). Cytotoxic activity of highly purified silver nanoparticles sol against cells of human immune system. Appl Biochem Biotechnol 176:817–34.
  • Bohets HH, Nouwen EJ, De Broe ME, Dierickx PJ. (1994). Effects of foetal calf serum on cell viability, cytotoxicity and detoxification in the two kidney-derived cell lines LLC-PK1 and MDCK. Toxicol In Vitro 8:559–61.
  • Bondarenko O, Juganson K, Ivask A, et al. (2013). Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–200.
  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–9.
  • Brewer S, Glomm W, Johnson M, et al. (2005). Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21:9303–7.
  • Burt JL, Gutiérrez-Wing C, Miki-Yoshida M, José-Yacamán M. (2004). Noble-metal nanoparticles directly conjugated to globular proteins. Langmuir 20:11778–83.
  • Carlson C, Hussain SM, Schrand AM, et al. (2008). Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–19.
  • Chaudhry Q, Castle L. (2011). Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22:595–603.
  • Chen F, Kuhn DC, Sun SC, et al. (1995). Dependence and reversal of nitric oxide production on NF-κ-B in silica and lipopolysaccharide induced macrophages. Biochem Biophys Res Commun 214:839–46.
  • Chen KS, Hsiao YC, Kuo DY, et al. (2009). Tannic acid-induced apoptosis and -enhanced sensitivity to arsenic trioxide in human leukemia HL-60 cells. Leuk Res 33:297–307.
  • Chen X, Schluesener HJ. (2008). Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12.
  • Choi O, Deng KK, Kim N-J, et al. (2008). The inhibition effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Resch 42:3066–74.
  • Choi O, Hu ZQ. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–8.
  • Collins SJ. (1987). The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood 70:1233–44.
  • Conner SD, Schmid SL. (2003). Regulated portals of entry into the cell. Nature 422:37–44.
  • Dolbeare F. (1995). Bromodeoxyuridine: a diagnostic tool in biology and medicine, Part I: historical perspectives, histochemical methods and cell kinetics. Histochem J 27:339–69.
  • Dutta A, Dolui SK. (2011). Tannic acid assisted one step synthesis route for stable colloidal dispersion of nickel nanostructures. Appl Surf Sci 257:6889–96.
  • El Badawy AM, Silva RG, Morris B, et al. (2010). Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–7.
  • Elzoghby AO, Samy WM, Elgindy NA. (2012). Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157:168–82.
  • Fedlheim DL, Foss CA. 2001. Metal nanoparticles: synthesis, characterization, and applications. New York (NY): CRC Press.
  • Foldbjerg R, Olesen P, Hougaard M, et al. (2009). PVP-coated silver nanoparticles and silver ions induce reactive oxygenspecies, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190:156–62.
  • Gebregeorgis A, Bhan C, Wilson O, Raghavan D. (2013). Characterization of silver/bovine serum albumin (Ag/BSA) nanoparticles structure: morphological, compositional, and interaction studies. J Coll Interf Sci 389:31–41.
  • Ghosh M, Manivannan J, Sinha S, et al. (2012). In vitro and in vivo genotoxicity of silver nanoparticles. Mutat Res 749:60–9.
  • Grade S, Eberhard J, Neumeister A, et al. (2012). Serum albumin reduces the antibacterial and cytotoxic effects of hydrogel-embedded colloidal silver nanoparticles. Rsc Adv 2:7190–6.
  • Greulich C, Diendorf J, Simon T, et al. (2011). Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 7:347–54.
  • Greulich C, Kittler S, Epple M, et al. (2009). Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbecks Arch Surg 394:495–502.
  • Harris P, Ralph P. (1985). Human leukemic models of myelomonocytic development: a review of the HL-60 and U937 cell lines. J Leukocyte Biol 37:407–22.
  • Hemingway, R.W., Laks, P.E., Branham, S.J. eds. (1992). Plant polyphenols: synthesis, properties, significance, vol. 59. Berlin, Germany: Springer Science & Business Media.
  • Hollinger MA. (1996). Toxicological aspects of topical silver pharmaceuticals. Crit Rev Toxicol 26:255–60.
  • Hsin YH, Chen CF, Huang S, et al. (2008). The apoptoticeffect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–9.
  • Hu YJ, Liu Y, Xiao XH. (2009). Investigation of the interaction between berberine and human serum albumin. Biomacromolecules 10:517–21.
  • Huong PL, Kolk AH, Eggelte TA, et al. (1991). Measurement of antigenspecific lymphocyte proliferation using 5-bromodeoxyutidine incorporation. J Immunol Methods 140:243–8.
  • Hussain S, Anner RM, Anner BM. (1992). Cysteine protects Na,K-ATPase and isolated human Lymphocytes from silver toxicity. Biochem Biophys Res Commun 189:1444–9.
  • Hussain SM, Hess KL, Gearhart JM, et al. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–83.
  • Jansson G, Harms-Ringdahl M. (1993). Stimulating effects ofmercuric and silver ions on the superoxide anion productionin human polymorphonuclear leukocytes. Free Radical Res Commun 18:87–98.
  • Jiang W, Kim BYS, Rutka JT, Chan WCW. (2008). Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145–50.
  • Kawata K, Osawa M, Okabe S. (2009). In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43:6046–51.
  • Kittler S, Greulich C, Diendorf J, et al. (2010). Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–54.
  • Kittler S, Greulich C, Köller M, Epple M. (2009). Synthesis of PVP-coated silver nanoparticles and their biological activity towards human mesenchymal stem cells. MaterialwissWerkstofftech 40:258–64.
  • Koch M, Kiefer S, Cavelius C, Kraegeloh A. (2012). Use of a silver ion selective electrode to assess mechanisms responsible for biological effects of silver nanoparticles. J Nanoparticle Res 14:1–11.
  • Kujda M, Oćwieja M, Adamczyk Z, et al. (2015). Charge stabilized silver nanoparticles applied as antibacterial agents. J Nanosci Nanotechnol 15:3574–83.
  • Li Y, Qin T, Ingle T, et al. (2016). Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch Toxicol 1–11. doi: 10.1007/s00204-016-1730-y.
  • Liu J, Kershaw WC, Klassen CD. (1991). The protectiveeffect of metallothionein on the toxicity of various metalsin rat primary hepatocyte culture. Toxicol Appl Pharmacol 107:27–34.
  • Liu R, Sun F, Zhang L, et al. (2009). Evaluation on the toxicity of nanoAg to bovine serum albumin. Sci Total Environ407:4184–8.
  • Locht LJ, Larsen A, Stoltenberg M, Danscher G. (2009). Cultured macrophages cause dissolucytosis of metallic silver. Histol Histopathol 24:167–73. ISSN 0213-3911, ISSN-e 1699-5848
  • Marambio-Jones C, Hoek EMV. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–51.
  • Mariam J, Dongre PM, Kothari DC. (2011). Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J Fluorescence 21:2193–9.
  • Matsumura Y, Yoshikata K, Kunisaki SI, Tsuchido T. (2003). Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–81.
  • McEvoy GK. 1997. Ed AHFS Drug Information 97. American Society of Health-System Pharmacist Bethesda MD 2130–2131.
  • Morones JR, Elechiguerra JL, Camacho A, et al. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–53.
  • Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63.
  • Murao SI, Gemmell MA, Callaham MF, et al. (1983). Control of macrophage cell differentiation in human promyelocytic HL-60 leukemia cells by 1, 25-dihydroxyvitamin D3 and phorbol-12-myristate-13-acetate. Cancer Res 43:4989–96.
  • Oberdörster G, Sharp Z, Atudorei V, et al. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalat Toxicol 16:437–45.
  • Oćwieja M, Adamczyk Z, Morga M, Michna A. (2011). High density silver nanoparticle monolayers produced by colloid self-assembly on polyelectrolyte supporting layers. J Coll Interf Sci 364:39–48.
  • Ostermeyer AK, KostigenMumuper C, Semprini L, Radniecki T. (2013). Influence of bovine serum albumin and alginate on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Environ Sci Technol 47:14403–10.
  • Pal S, Tak YK, Song JM. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–20.
  • Pan Z, Lee W, Slutsky L, et al. (2009). Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 5:511–20.
  • Park J, Lim DH, Lim HJ, et al. (2011a). Size dependent macrophage responses and toxicological effects of Ag nanoparticles. Chem Commun (Camb) 47:4382–4.
  • Park MV, Neigh AM, Vermeulen JP, et al. (2011b). The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–7.
  • Park S, Lee YK, Jung M, et al. (2007). Cellular toxicity of various inhalable metal nanoparticles on human alveolar epitelial cells. Inhal Toxicol 19:59–65.
  • Peretyazhko TS, Zhang Q, Colvin VL. (2013). Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ Sci Technol 48:11954–61.
  • Pratsinis A, Hervella P, Leroux JC, et al. (2013). Toxicity of silver nanoparticles in macrophages. Small 9:2576–84.
  • Raj J, Chandra M, Dogra TD, et al. (2013). Determination of median lethal dose of combination of endosulfan and cypermethrin in wistar rat. Toxicol Int 20:1–5.
  • Ratte HT. (1999). Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108.
  • Ravindran A, Singh A, Raichur AM, et al. (2010). Studies on interaction of colloidal Ag nanoparticles with bovine serum albumin (BSA). Colloids Surf B Biointerf 76:32–7.
  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–16.
  • Sambhy V, MacBride MM, Peterson BR, Sen A. (2006). Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128:9798–808.
  • Sanguansri P, Augustin MA. (2006). Nanoscale materials development–a food industry perspective. Trends Food Sci Technol 17:547–56.
  • Schrurs F, Lison D. (2012). Focusing the research efforts. Nat Nanotechnol 7:546–8.
  • Shin SH, Ye MK, Kim HS, Kang HS. (2007). The effects of nano-silver on theproliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 7:1813–18.
  • Singh AV, Bandgar BM, Kasture M, et al. (2005). Synthesis of gold, silver and their alloy nanoparticles using bovine serum albumin as foaming and stabilizing agent. J Mater Chem 15:5115–21.
  • Silva T, Pokhrel LR, Dubey B, et al. (2014). Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci Total Environ 468-469:968–76.
  • Sivaraman SK, Kumar S, Santhanam V. (2010). Room-temperature synthesis of gold nanoparticles—Size-control by slow addition. Gold Bull 43:275–86.
  • Slawson RM, Lee H, Trevors JT. (1990). Bacterial interactions with silver. Biol Met 3:151–4.
  • Sonavane G, Tomoda K, Makino K. (2008). Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerf 66:274–80.
  • Stępkowski TM, Brzóska K, Kruszewski M. (2014). Silver nanoparticles induced changes in the expression of NF-κB related genes are cell type specific and related to the basal activity of NF-κB. Toxicol in Vitro 28:473–8.
  • Tang J, Xiong L, Wang S, et al. (2009). Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9:4924–32.
  • Tian JN, Liu JQ, Hu Z, Chen XG. (2005). Interaction of wogonin with bovine serum albumin. Bioorg Med Chem 13:4124–9.
  • Tiede K, Boxall AB, Tear SP, et al. (2008). Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:795–821.
  • Tolaymat TM, Badawy AME, Genaidy A, et al. (2010). An evidence-based environmental perspective of manufactured silver nanoparticles in synthesis and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408:999–1006.
  • Wang F, Yu L, Monopoli MP, et al. (2013). The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine 9:1159–68.
  • Wijnhoven SW, Peijnenburg WJ, Herberts CA, et al. (2009). Nano-silver–a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–38.
  • Wilchek M, Bayer EA. 1990. Methods in enzymology. In Avidin-biotin technology, vol 184. San Diego: Academic Press.
  • Zbinden G, Flury-Roversi M. (1981). Significance of the LD50-test for the toxicological evaluation of chemical substances. Arch Toxicol 47:77–99.
  • Zhang J, Han B, Chen J, et al. (2005). Synthesis of Ag/BSA composite nanospheres from water‐in‐oil microemulsion using compressed CO2 as antisolvent. Biotechnol Bioeng 89:274–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.