57
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of oxidative stress induction in rats following exposure to silver nanorods

&
Pages 272-278 | Received 05 Nov 2016, Accepted 15 Dec 2016, Published online: 25 Jan 2017

References

  • Abudayyak M, Oztas E, Arici M, Gul O. (2016). In vitro toxicological assessment of magnesium oxide nanoparticle exposure in several mammalian cell types. Int J Toxicol 35:429–37.
  • Alexandra J, Dieter GW, Ludwig J, Ralf K. (2012). Oxidative stress-induced cytotoxic and genotoxic effects of nano-sized titanium dioxide particles in human HaCaT keratinocytes. Toxicology 296:27–36.
  • Alicia A, Ana IH, Diego M, Paloma M. (2014). Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J Appl Toxicol 34:413–23.
  • Andrea H, Stephanie R, Alexandre M, et al. (2012). Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol Sci 126:457–68.
  • Animesh KO, Stefan F, Sumeet K, et al. (2013). Synthesis of well-dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram positive and negative bacterial strains. J Nanobiotechnol 11:42.
  • Anreddy RNR, Yellu NR, Devarakonda RK, Vurimindi H. (2010). Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK 293) cells. Toxicology 272:11–16.
  • Chen X, Schluesener HJ. (2008). Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12.
  • Coradeghini R, Gioria S, Garcia CP, et al. (2013). Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett217:205–16.
  • Dubas ST, Pimpan V. (2008). Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection. Mater Lett 62:2661–63.
  • Favi PM, Valencia MM, Elliott PR, et al. (2015). Shape and surface chemistry effects on the cytotoxicity and cellular uptake of metallic nanorods and nanospheres. J Biomed Mater Res A 103:3940–55.
  • Harikiran L, Bhikku A, Narsimha RY. (2015). In vitro cytotoxicity of gold and silver nanorods using different human cell lines. Latin Am J Pharm 34:1277–82.
  • Harikiran L, Narsimhareddy Y. (2016). Cytotoxicity, oxidative stress, and inflammation in human Hep G2 liver epithelial cells following exposure to gold nanorods. Toxicol Mech Methods 26:340–47.
  • Igor P, Isabelle P, Brigitte B, et al. (2011). Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10.
  • Jennifer M, Jacek Z, Anna L, Maciej W. (2016). Prolonged Effects of Silver Nanoparticles on p53/p21 Pathway-Mediated Proliferation, DNA damage response, and methylation parameters in HT22 hippocampal neuronal cells. Mol Neurobiol. doi: 10.1007/s12035-016-9688-6.
  • Kiranmai G, Reddy AR. (2013). Antioxidant status in MgO nanoparticle-exposed rats. Toxicol Ind Health 29:897–903.
  • Kiranmai G, Mahendar P, Rama NRA. (2013). Assessment of pulmonary toxicity of MgO nanoparticles in rats. Environ Toxicol 30:308–14.
  • Lankveld DP, Oomen AG, Krystek P, et al. (2010). The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 31:8350–61.
  • Lepock JR, Frey HE, Hallewell RA. (1990). Contribution of conformational stability and reversibility of unfolding to the increased thermostability of human and bovine superoxide dismutase mutated at free cysteines. J Biol Chem 265:21612–18.
  • Li S, Zhi, Zhi GY, Wen BG, et al. (2015). Silver nanorod array electrodes and their application for detection of low concentration chloropropanol in aqueous media. Appl Mech Mater 697:136–39.
  • Maqusood A, Mohamad SA, Siddiqui MKJ. (2010). Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–48.
  • Marin S, Vlasceanu GM, Tiplea RE, et al. (2015). Applications and toxicity of silver nanoparticles: a recent review. Curr Topics Med Chem 15:1596–604.
  • Marquis BJ, Love SA, Braun KL, Haynes CL. (2009). Analytical methods to assess nanoparticle toxicity. Analyst 134:425–39.
  • Mytilineou C, Kramer BC, Yabut JA. (2002). Glutathione depletion and oxidative stress. Parkinsonism Relat Disord 8:385–87.
  • Pengjuan X, Jing X, Shichang L, Zhuo Y. (2012). Nano copper induced apoptosis in podocytes via increasing oxidative stress. J Hazard Mater 241:279–86.
  • Porntipa C, Somsong L, Sittiruk R, et al. (2013). Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol in Vitro 27:330–38.
  • Reddy AR, Rao MV, Krishna DR, et al. (2011). Evaluation of oxidative stress and antioxidant status in rat serum following exposure of carbon nanotubes. Regul Toxicol Pharmacol 59:251–57.
  • Reddy AR, Reddy YN, Krishna DR, Himabindu V. (2012). Pulmonary toxicity assessment of multiwalled carbon nanotubes in rats following intratracheal instillation. Environ Toxicol 27:211–19.
  • Rona M, Rita R, Madeleine R, et al. (2014). Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol in Vitro 28:1280–9.
  • Rosella C, Sabrina G, Cesar PG, et al. (2013). Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217:205–16.
  • Rothen RB, Brown DM, Piallier-Boyles M, et al. (2010). Relating the physicochemical characteristics and dispersion of multiwalled carbon nanotubes in different suspension media to their oxidative reactivity in vitro and inflammation in vivo. Nanotoxicology 4:331–42.
  • Saunders BR. (2012). Hybrid polymer/nanoparticle solar cells: preparation, principles and challenges. J Colloid Interface Sci 369:1–15.
  • Soderstjerna E, Bauer P, Cedervall T, et al. (2014). Silver and gold nanoparticles exposure to in vitro cultured retina – Studies on nanoparticle internalization, apoptosis, oxidative stress, glial- and microglial activity. Plos One 9:e105359.
  • Subramanian V, Manjula IN, Alan GJ, et al. (2013). Silver nanorod arrays for photocathode applications. Appl Phys Lett 103:161112.
  • Sur I, Cam D, Kahraman M, Baysal A. (2010). Interaction of multi-functional silver nanoparticles with living cells. Nanotechnology 21:175104.
  • Susann G, Lars E, Tore S. (2013). Silver nanoparticle-induced cytotoxicity in rat brain endothelial cell culture. Toxicol in Vitro 27:305–13.
  • Valentine JS, Hart PJ. (2003). Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc Natl Acad Sci USA100:3617–22.
  • Votyakova TV, Reynolds IJ. (2004). Detection of hydrogen peroxide with Amplex Red: interference by NADH and reduced glutathione auto-oxidation. Arch Biochem Biophys 431:138–44.
  • Wan-Seob C, Minjung C, Jinyoung J, et al. (2009). Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 236:16–24.
  • Warheit DB, Webb TR, Reed KL, et al. (2007). Pulmonary toxicity study in rats with three forms of ultrafine- TiO2 particles: differential responses related to surface properties. Toxicology 230:90–104.
  • Wheeler CR, Salzman JA, Elsayed NM, et al. (1990). Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal Biochem 184:193–99.
  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, et al. (2009). Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–38.
  • Xiaomei L, Kristin S, Laetitia B, et al. (2015). Silver nanoparticle toxicity and association with the alga Euglena gracilis. Environ Sci Nano 2:594–602.
  • Yah CS, Iyuke SE, Simate GS, et al. (2011). Continuous synthesis of multiwalled carbon nanotubes from xylene using the swirled floating catalyst chemical vapor deposition technique. J Mater Res 26:623–32.
  • Zelko IN, Mariani TJ, Folz RJ. (2002). Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–49.
  • Zhang J, Johnston G, Stebler B, Keller ET. (2001). Hydrogen peroxide activates NFkappaB and the interleukin-6 promoter through NFkappaB-inducing kinase. Antioxid Redox Signal 3:493–504.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.