216
Views
10
CrossRef citations to date
0
Altmetric
Reasearch Article

Influence of bovine serum albumin pre-incubation on toxicity and ER stress-apoptosis gene expression in THP-1 macrophages exposed to ZnO nanoparticles

, , , , , & show all
Pages 587-598 | Received 09 Mar 2018, Accepted 18 May 2018, Published online: 21 Jun 2018

References

  • Bouwmeester H, van der Zande M, Jepson MA. 2018. Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota. WIREs Nanomed Nanobiotechnol. 10:e1481.
  • Cao Y, Gong Y, Liu L, Zhou Y, Fang X, Zhang C, Li Y, Li J. 2017. The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review. J Appl Toxicol. 37:1359–1369.
  • Cao Y, Jantzen K, Gouveia AC, Skovmand A, Roursgaard M, Loft S, Moller P. 2015. Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro. Environ Toxicol Pharmacol. 40:164–171.
  • Cao SS, Kaufman RJ. 2014. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 21:396–413.
  • Cao Y, Li J, Liu F, Li X, Jiang Q, Cheng S, Gu Y. 2016. Consideration of interaction between nanoparticles and food components for the safety assessment of nanoparticles following oral exposure: A review. Environ Toxicol Pharmacol. 46:206–210.
  • Cao Y, Long J, Liu L, He T, Jiang L, Zhao C, Li Z. 2017. A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure. Life Sci. 186:33–42.
  • Cao Y, Xie Y, Liu L, Xiao A, Li Y, Zhang C, Fang X, Zhou Y. 2017. Influence of phytochemicals on the biocompatibility of inorganic nanoparticles: a state-of-the-art review. Phytochem Rev. 16:555–563.
  • Cao Y, Gong Y, Liao W, Luo Y, Wu C, Wang M, Yang Q. 2018. A review of cardiovascular toxicity of TiO2, ZnO and Ag nanoparticles (NPs). BioMetals. doi: 10.1007/s10534-018-0113-7
  • Chen G, Shen Y, Li X, Jiang Q, Cheng S, Gu Y, Liu L, Cao Y. 2017. The endoplasmic reticulum stress inducer thapsigargin enhances the toxicity of ZnO nanoparticles to macrophages and macrophage-endothelial co-culture. Environ Toxicol Pharmacol. 50:103–110.
  • Chen R, Huo L, Shi X, Bai R, Zhang Z, Zhao Y, Chang Y, Chen C. 2014. Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano. 8:2562–2574.
  • Corbo C, Molinaro R, Parodi A, Toledano Furman NE, Salvatore F, Tasciotti E. 2016. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (Lond). 11:81–100.
  • Danielsen PH, Cao Y, Roursgaard M, Moller P, Loft S. 2015. Endothelial cell activation, oxidative stress and inflammation induced by a panel of metal-based nanomaterials. Nanotoxicology. 9:813–824.
  • Docter D, Westmeier D, Markiewicz M, Stolte S, Knauer SK, Stauber RH. 2015. The nanoparticle biomolecule corona: lessons learned – Challenge accepted? Chem Soc Rev. 44:6094–6121.
  • Duan G, Kang SG, Tian X, Garate JA, Zhao L, Ge C, Zhou R. 2015. Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane. Nanoscale. 7:15214–15224.
  • Escamilla-Rivera V, Uribe-Ramirez M, Gonzalez-Pozos S, Lozano O, Lucas S, De Vizcaya-Ruiz A. 2016. Protein corona acts as a protective shield against Fe3O4-PEG inflammation and ROS-induced toxicity in human macrophages. Toxicol Lett. 240:172–184.
  • Gong Y, Ji Y, Liu F, Li J, Cao Y. 2017. Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial cells: interaction with palmitate or lipopolysaccharide. J Appl Toxicol. 37:895–901.
  • Gong Y, Li X, Liao G, Ding Y, Li J, Cao Y. 2018. Cytotoxicity and ER stress-apoptosis gene expression in ZnO nanoparticle exposed THP-1 macrophages: influence of pre-incubation with BSA or palmitic acids complexed to BSA. RSC Adv. 8:15380–15388.
  • Gu Y, Cheng S, Chen G, Shen Y, Li X, Jiang Q, Li J, Cao Y. 2017. The effects of endoplasmic reticulum stress inducer thapsigargin on the toxicity of ZnO or TiO2 nanoparticles to human endothelial cells. Toxicol Mech Methods. 27:191–200.
  • Hidalgo A, Cruz A, Perez-Gil J. 2017. Pulmonary surfactant and nanocarriers: toxicity versus combined nanomedical applications. Biochim Biophys Acta. 1859:1740–1748.
  • Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q. 2011. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano. 5:3693–3700.
  • James SA, Feltis BN, de Jonge MD, Sridhar M, Kimpton JA, Altissimo M, Mayo S, Zheng C, Hastings A, Howard DL, et al. 2013. Quantification of ZnO nanoparticle uptake, distribution, and dissolution within individual human macrophages. ACS Nano. 7:10621–10635.
  • Ji Y, Zhu M, Gong Y, Tang H, Li J, Cao Y. 2017. Thermoresponsive polymers with lower critical solution temperature- or upper critical solution temperature-type phase behaviour do not induce toxicity to human endothelial cells. Basic Clin Pharmacol Toxicol. 120:79–85.
  • Jiang Q, Li X, Cheng S, Gu Y, Chen G, Shen Y, Xie Y, Cao Y. 2016. Combined effects of low levels of palmitate on toxicity of ZnO nanoparticles to THP-1 macrophages. Environ Toxicol Pharmacol. 48:103–109.
  • Kathiravan A, Paramaguru G, Renganathan R. 2009. Study on the binding of colloidal zinc oxide nanoparticles with bovine serum albumin. J Mol Struct. 934:129–137.
  • Kermanizadeh A, Gosens I, MacCalman L, Johnston H, Danielsen PH, Jacobsen NR, Lenz AG, Fernandes T, Schins RP, Cassee FR, et al. 2016. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health–ENPRA Project–The highlights, limitations, and current and future challenges. J Toxicol Environ Health B Crit Rev. 19:1–28.
  • Kermanizadeh A, Pojana G, Gaiser BK, Birkedal R, Bilanicova D, Wallin H, Jensen KA, Sellergren B, Hutchison GR, Marcomini A, et al. 2013. In vitro assessment of engineered nanomaterials using a hepatocyte cell line: cytotoxicity, pro-inflammatory cytokines and functional markers. Nanotoxicology. 7:301–313.
  • Kharazian B, Hadipour NL, Ejtehadi MR. 2016. Understanding the nanoparticle-protein corona complexes using computational and experimental methods. Int J Biochem Cell Biol. 75:162–174.
  • Khare P, Sonane M, Nagar Y, Moin N, Ali S, Gupta KC, Satish A. 2015. Size dependent toxicity of zinc oxide nano-particles in soil nematode Caenorhabditis elegans. Nanotoxicology. 9:423–432.
  • Kim HJ, Bae SH, Kim HJ, Kim KM, Song JH, Go MR, Yu J, Oh JM, Choi SJ. 2017a. Cytotoxicity, intestinal transport, and bioavailability of dispersible iron and zinc supplements. Front Microbiol 8:749.
  • Kim KB, Kim YW, Lim SK, Roh TH, Bang DY, Choi SM, Lim DS, Kim YJ, Baek SH, Kim MK, et al. 2017. Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens. J Toxicol Environ Health B Crit Rev. 20:155–182.
  • Koh WL, Tham PH, Yu H, Leo HL, Yong Kah JC. 2016. Aggregation and protein corona formation on gold nanoparticles affect viability and liver functions of primary rat hepatocytes. Nanomedicine (Lond). 11:2275–2287.
  • Kuang H, Yang P, Yang L, Aguilar ZP, Xu H. 2016. Size dependent effect of ZnO nanoparticles on endoplasmic reticulum stress signaling pathway in murine liver. J Hazard Mater. 317:119–126.
  • Li X, Fang X, Ding Y, Li J, Cao Y. 2018. Toxicity of ZnO nanoparticles (NPs) with or without hydrophobic surface coating to THP-1 macrophages: interactions with BSA or oleate-BSA. Toxicol Mech Methods. 1:4–26.
  • Liu J, Feng X, Wei L, Chen L, Song B, Shao L. 2016. The toxicology of ion-shedding zinc oxide nanoparticles. Crit Rev Toxicol. 46:348–384.
  • Long J, Li X, Kang Y, Ding Y, Gu Z, Cao Y. 2018. Internalization, cytotoxicity, oxidative stress and inflammation of multi-walled carbon nanotubes in human endothelial cells: influence of pre-incubation with bovine serum albumin. RSC Adv. 8:9253–9260.
  • Lopes S, Ribeiro F, Wojnarowicz J, Łojkowski W, Jurkschat K, Crossley A, Soares AMVM, Loureiro S. 2014. Zinc oxide nanoparticles toxicity to Daphnia magna: size-dependent effects and dissolution. Environ Toxicol Chem. 33:190–198.
  • McClements DJ, Xiao H, Demokritou P. 2017. Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Adv Colloid Interface Sci. 246:165–180.
  • Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. 2017. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today. 22:1825–1834.
  • Monopoli MP, Aberg C, Salvati A, Dawson KA. 2012. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 7:779–786.
  • Moore TL, Rodriguez-Lorenzo L, Hirsch V, Balog S, Urban D, Jud C, Rothen-Rutishauser B, Lattuada M, Petri-Fink A. 2015. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev. 44:6287–6305.
  • Ng CT, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, Baeg GH. 2017. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomed. 12:1621–1637.
  • O'Keefe SJ, Feltis BN, Piva TJ, Turney TW, Wright PF. 2016. ZnO nanoparticles and organic chemical UV-filters are equally well tolerated by human immune cells. Nanotoxicology. 10:1287–1296.
  • Pelaz B, Charron G, Pfeiffer C, Zhao Y, de la Fuente JM, Liang XJ, Parak WJ, Del PP. 2013. Interfacing engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions. Small. 9:1573–1584.
  • Pino P, Pelaz B, Zhang Q, Maffre P, Nienhaus GU, Parak WJ. 2014. Protein corona formation around nanoparticles – From the past to the future. Mater Horiz. 1:301–313.
  • Rasmussen JW, Martinez E, Louka P, Wingett DG. 2010. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 7:1063–1077.
  • Repetto G, del PA, Zurita JL. 2008. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 3:1125–1131.
  • Sahu D, Kannan GM, Vijayaraghavan R. 2014. Size-dependent effect of zinc oxide on toxicity and inflammatory potential of human monocytes. J Toxicol Environ Health Part A. 77:177–191.
  • Saptarshi SR, Duschl A, Lopata AL. 2015. Biological reactivity of zinc oxide nanoparticles with mammalian test systems: an overview. Nanomedicine (Lond). 10:2075–2092.
  • Schottler S, Landfester K, Mailander V. 2016. Controlling the stealth effect of nanocarriers through understanding the protein corona. Angew Chem Int Ed Engl. 55:8806–8815.
  • Shen C, James SA, de Jonge MD, Turney TW, Wright PF, Feltis BN. 2013. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol Sci. 136:120–130.
  • Shen Y, Chen G, Xiao A, Xie Y, Liu L, Cao Y. 2018. In vitro effect of flaxseed oil and α-linolenic acid against the toxicity of lipopolysaccharide (LPS) to human umbilical vein endothelial cells. Inflammopharmacology. 26:645–654.
  • Shi LE, Li ZH, Zheng W, Zhao YF, Jin YF, Tang ZX. 2014. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 31:173–186.
  • Soenen SJ, Parak WJ, Rejman J, Manshian B. 2015. (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev. 115:2109–2135.
  • Sohail A, Faraz M, Arif H, Bhat SA, Siddiqui AA, Bano B. 2017. Deciphering the interaction of bovine heart cystatin with ZnO nanoparticles: Spectroscopic and thermodynamic approach. Int J Biol Macromol. 95:1056–1063.
  • Sovolyova N, Healy S, Samali A, Logue SE. 2014. Stressed to death – Mechanisms of ER stress-induced cell death. Biol Chem. 395:1–13.
  • Stern ST, Adiseshaiah PP, Crist RM. 2012. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol. 9:20.
  • Xiong HM. 2013. ZnO nanoparticles applied to bioimaging and drug delivery. Adv Mater Weinheim. 25:5329–5335.
  • Xu Q, Liu Y, Su R, Cai L, Li B, Zhang Y, Zhang L, Wang Y, Wang Y, Li N, et al. 2016. Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental-theoretical consideration. Nanoscale. 8:17919–17927.
  • Yang X, Shao H, Liu W, Gu W, Shu X, Mo Y, Chen X, Zhang Q, Jiang M. 2015. Endoplasmic reticulum stress and oxidative stress are involved in ZnO nanoparticle-induced hepatotoxicity. Toxicol Lett. 234:40–49.
  • Yin H, Casey PS, McCall MJ, Fenech M. 2015. Size-dependent cytotoxicity and genotoxicity of ZnO particles to human lymphoblastoid (WIL2-NS) cells. Environ Mol Mutagen. 56:767–776.
  • Yu J, Kim HJ, Go MR, Bae SH, Choi SJ. 2017. ZnO interactions with biomatrices: effect of particle size on ZnO-protein corona. Nanomaterials (Basel). 7:E377.
  • Zhao X, Lu D, Hao F, Liu R. 2015. Exploring the diameter and surface dependent conformational changes in carbon nanotube-protein corona and the related cytotoxicity. J Hazard Mater. 292:98–107.
  • Zhou Y, Fang X, Gong Y, Xiao A, Xie Y, Liu L, Cao Y. 2017. The interactions between ZnO nanoparticles (NPs) and alpha-linolenic acid (LNA) complexed to BSA did not influence the toxicity of ZnO NPs on HepG2 cells. Nanomaterials (Basel). 7:E91.
  • Žūkienė R, Snitka V. 2015. Zinc oxide nanoparticle and bovine serum albumin interaction and nanoparticles influence on cytotoxicity in vitro. Colloids Surf B Biointerfaces. 135:316–323.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.