240
Views
7
CrossRef citations to date
0
Altmetric
Research Article

MDCKpred: a web-tool to calculate MDCK permeability coefficient of small molecule using membrane-interaction chemical features

, , &
Pages 685-698 | Received 30 Jan 2018, Accepted 10 Jul 2018, Published online: 27 Sep 2018

References

  • Andreas M, Günter K, Thomas U, Sepp H. 2016. DeepTox: toxicity prediction using deep learning. Front Environ Sci. 3:80. doi: 10.3389/fenvs.2015.00080
  • Artursson P, Karlsson J. 1991. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun. 175(3):880–885.
  • Avdeef A. 2010. Leakiness and size exclusion of paracellular channels in cultured epithelial cell monolayers – interlaboratory comparison. Pharm Res. 27(3):480–489.
  • Avdeef A, Artursson P, Neuhoff S, Lazorova L, Gråsjö J, Tavelin S. 2005. Caco-2 permeability of weakly basic drugs predicted with the double-sink PAMPA pKa(flux) method. Eur J Pharm Sci. 24(4):333–349.
  • Bolton EE, Wang Y, Thiessen PA, Bryant SH. 2008. Chapter 12 – PubChem: integrated platform of small molecules and biological activities. Annu Rep Comput Chem. 04:217–241.
  • Bonchev D, Trinajstić N. 1977. Information theory, distance matrix, and molecular branching. J Chem Phys. 67(10):4517–4533.
  • Brandsch M, Ganapathy V, Leibach FH. 1995. H(+)-peptide cotransport in Madin-Darby Canine Kidney cells: expression and calmodulin-dependent regulation. Am J Physiol. 268(3 Pt 2):F391–F397.
  • Broccatelli F, Salphati L, Plise E, Cheong J, Gobbi A, Lee M-L, Aliagas I. 2016. Predicting passive permeability of drug-like molecules from chemical structure: where are we? Mol Pharm. 13(12):4199–4208.
  • Burton PS, Conradi RA, Hilgers AR, Ho NFH, Maggiora LL. 1992. The relationship between peptide structure and transport across epithelial cell monolayer. J Control Release. 19(1–3):87–98.
  • Butina D, Segall MD, Frankcombe K. 2002. Predicting ADME properties in silico: methods and models. Drug Discov Today. 7(11):S83–S88.
  • Caldwell GW, Yan Z, Tang W, Dasgupta M, Hasting B. 2009. ADME optimization and toxicity assessment in early- and late-phase drug discovery. Curr Top Med Chem. 9(11):965–980.
  • Cao D-S, Xu Q-S, Hu Q-N, Liang Y-Z. 2013. ChemoPy: freely available python package for computational biology and chemoinformatics. Bioinformatics. 29(8):1092–1094.
  • Chen L, Lu J, Huang T, Yin J, Wei L, Cai Y-D. 2014. Finding candidate drugs for hepatitis C based on chemical-chemical and chemical-protein interactions. PLoS One. 9(9):e107767.
  • Chen L, Yao J, Yang J-B, Yang J. 2005. Predicting MDCK cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis. Acta Pharmacol Sin. 26(11):1322–1333.
  • Chen L, Zeng W-M, Cai Y-D, Feng K-Y, Chou K-C. 2012. Predicting Anatomical Therapeutic Chemical (ATC) classification of drugs by integrating chemical-chemical interactions and similarities. PLoS One. 7(4):e35254.
  • Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y. 2012. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. 52(11):3099–3105.
  • Cho MJ, Thompson DP, Cramer CT, Vidmar TJ, Scieszka JF. 1989. The Madin-Darby canine kidney (MDCK) epithelial cell monolayer as a model cellular transport barrier. Pharm. Res. 6(1):71–77.
  • de Oliveira DB, Gaudio AC. 2000. BuildQSAR: a new computer program for QSAR analysis. Quant Struct Act Relat. 19(6):599–601.
  • Dong J, Cao D-S, Miao H-Y, Liu S, Deng B-C, Yun Y-H, Wang N-N, Lu A-P, Zeng W-B, Chen AF. 2015. ChemDes: an integrated web-based platform for molecular descriptor and fingerprint computation. J Cheminform. 7:60.
  • Gasteiger J, Marsili M. 1980. Iterative partial equalization of orbital electronegativity – a rapid access to atomic charges. Tetrahedron. 36(22):3219–3228.
  • Hilgers AR, Conradi RA, Burton PS. 1990. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm Res. 7(9):902–910.
  • Horster M, Stopp M. 1986. Transport and metabolic functions in cultured renal tubule cells. Kidney Int. 29(1):46–53.
  • Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE, Grove JR. 1999. MDCK (Madin-Darby Canine Kidney) cells: a tool for membrane permeability screening. J Pharm Sci. 88(1):28–33.
  • Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. 2012. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model. 52(7):1757–1768.
  • Iyer M, Mishra R, Han Y, Hopfinger AJ. 2002. Predicting blood–brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis. Pharm Res. 19(11):1611–1621.
  • Jin X, Luong T-L, Reese N, Gaona H, Collazo-Velez V, Vuong C, Potter B, Sousa JC, Olmeda R, Li Q, et al. 2014. Comparison of MDCK-MDR1 and Caco-2 cell based permeability assays for anti-malarial drug screening and drug investigations. J Pharmacol Toxicol Methods. 70(2):188–194.
  • Kulkarni A, Han Y, Hopfinger AJ. 2002. Predicting Caco-2 cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis. J Chem Inf Comput Sci. 42(2):331–342.
  • Kumar SP. 2018. PLHINT: a knowledge-driven computational approach based on the intermolecular H bond interactions at the protein-ligand interface from docking solutions. J Mol Graph Model. 79:194–212.
  • Kumar SP, Jha PC, Jasrai YT, Pandya HA. 2016. The effect of various atomic partial charge schemes to elucidate consensus activity-correlating molecular regions: A test case of diverse QSAR models. J Biomol Struct Dyn. 34(3):540–559.
  • Landrum G. RDKit: open-source cheminformatics. 2017. [accessed Oct 29]. http://www.rdkit.org.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. 2001. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv Rev. 46(1–3):3–25.
  • Mangal M, Sagar P, Singh H, Raghava GPS, Agarwal SM. 2013. NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database. Nucleic Acids Res. 41(Database issue):D1124–D1129.
  • Marvin S. 5.11.4, ChemAxon LLC, 2012. [accessed 2017 Oct 25]. https://www.chemaxon.com/.
  • Mayo SL, Olafson BD, Goddard WA. 1990. DREIDING: A generic force field for molecular simulations. J Phys Chem. 94(26):8897–8909.
  • Online SMILES translator and structure file generator, National Cancer Institute. [accessed 2017 Oct 21]. https://cactus.nci.nih.gov/translate/.
  • Patel RD, Kumar SP, Patel CN, Shankar SS, Pandya HA, Solanki HA. 2017. Parallel screening of drug-like natural compounds using Caco-2 cell permeability QSAR model with applicability domain, lipophilic ligand efficiency index and shape property: a case study of HIV-1 reverse transcriptase inhibitors. J Mol Struct. 1146:80–95.
  • Pham The H, González-Álvarez I, Bermejo M, Mangas Sanjuan V, Centelles I, Garrigues TM, Cabrera-Pérez MÁ. 2011. In silico prediction of Caco-2 cell permeability by a classification QSAR approach. Mol Inf. 30(4):376–385.
  • Pinto M, Robine-Leon S, Appay M, Kedinger M, Triadou N, Dussaulx E, Lacroix B, Simon-Assmann P, Haffen K, Fogh J. 1983. Caco-2 cell monolayer a surrogate marker for in vivo intestinal permeability in humans. Biol Cell. 47:323–328.
  • Pires DE, Blundell TL, Ascher DB. 2015. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 58(9):4066–4072.
  • PreADMET server, Yonsei University, Republic of Korea. [accessed 2017 Oct 21]. https://www.preadmet.bmdrc.kr
  • QikProp 3.5 (2012), User manual, Schrödinger, LLC. [accessed 2017 Oct 21].
  • Ranaldi G, Islam K, Sambuy Y. 1992. Epithelial cells in culture as a model for the intestinal transport of antimicrobial agents. Antimicrob Agents Chemother. 36(7):1374–1381.
  • Refsgaard HHF, Jensen BF, Brockhoff PB, Padkjaer SB, Guldbrandt M, Christensen MS. 2005. In silico prediction of membrane permeability from calculated molecular parameters. J Med Chem. 48(3):805–811.
  • Reinhardt CA, Gloor SM. 1997. Co-culture blood-brain barrier models and their use for pharmatoxicological screening. Toxicol In Vitro. 11(5):513–518.
  • Varma MV, Gardner I, Steyn SJ, Nkansah P, Rotter CJ, Whitney-Pickett C, Zhang H, Di L, Cram M, Fenner KS, et al. 2012. pH-Dependent solubility and permeability criteria for provisional biopharmaceutics classification (BCS and BDDCS) in early drug discovery. Mol Pharm. 9(5):1199–1212.
  • Varma MV, Sateesh K, Panchagnula R. 2005. Functional role of P-glycoprotein in limiting intestinal absorption of drugs: contribution of passive permeability to P-glycoprotein mediated efflux transport. Mol Pharm. 2(1):12–21
  • Wager TT, Chandrasekaran RY, Hou X, Troutman MD, Verhoest PR, Villalobos A, Will Y. 2010. Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chem Neurosci. 1(6):420–434.
  • Weininger D. 1988. SMILES, a chemical language and information system.1. Introduction to methodology and encoding rules. J Chem Inf Model. 28(1):31–36.
  • Wiener H. 1947. Structural determination of paraffin boiling points. J Am Chem Soc. 69(1):17–20.
  • Yamashita S, Tanaka Y, Endoh Y, Taki Y, Sakane T, Nadai T, Sezaki H. 1997. Analysis of drug permeation across Caco-2 monolayer: implication for predicting in vivo drug absorption. Pharm Res. 14(4):486–491.
  • Yazdanian M, Glynn SL, Wright JL, Hawi A. 1998. Correlating partitioning and caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm Res. 15(9):1490–1494.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.