204
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Does low concentration mycotoxin exposure induce toxicity in HepG2 cells through oxidative stress?

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 417-426 | Received 07 Mar 2020, Accepted 13 Apr 2020, Published online: 28 Apr 2020

References

  • Alassane-Kpembi I, Kolf-Clauw M, Gauthier T, Abrami R, Abiola FA, Oswald IP, Puel O. 2013. New insights into mycotoxin mixture: the toxicity of low doses of type B trochothecenes on intestinal epithelial cells is synergistic. Toxicol Appl Pharmacol. 272(1):191–198.
  • Agrawal M, Bhaskar ASB, Rao PL. 2015. Involvement of mitogen-activated protein kinase pathway in T-2 toxin-induced cell cycle alteration and apoptosis in human neuroblastoma cells. Mol Neurobiol. 51(3):1379–1394.
  • Arunachalam C, Doohan FM. 2013. Trichothecene toxicity in eukaryotes: Cellular and molecular mechanisms in plants and animals. Toxicol Lett. 217(2):149–158.
  • Aupanun S, Phuektes P, Poapolathep S, Alassane-Kpembi I, Oswald IP, Poapolathep A. 2019. Individual and combined cytotoxicity of major trichothecenes type B, deoxynivalenol, nivalenol, and fusarenon-X on Jurkat human T cells. Toxicon. 160:29–37.
  • Ayed-Boussema I, Abassi H, Bouaziz C, Hlima WB, Ayed Y, Bacha H. 2013. Antioxidative and antigenotoxic effect of vitamin E against patulin cytotoxicity and genotoxicity in HepG2 cells. Environ Toxicol. 28(6):206–299.
  • Behm C, Föllmann W, Degen GH. 2012. Cytotoxic potency of mycotoxins in cultures of V79 lung fibroblast cells. J Toxicol Environ Health. 75(19–20):1226–1231.
  • Bensassi F, El Golli-Bennour E, Abid-Essefi S, Bouaziz C, Hajlaoui MR, Bacha H. 2009. Pathway of deoxynivalenol-induced apoptosis in human colon carcinoma cells. Toxicology. 264(1–2):104–109.
  • Bouaziz C, Bouslimi A, Kadri R, Zaied C, Bacha H, Abid-Essefi S. 2013. The in vitro effects of zearalenone and T-2 toxins on Vero cells. Exp Toxicol Pathol. 65(5):401–497.
  • Bouaziz C, Martel C, Sharaf el Dein O, Abid-Essefi S, Brenner C, Lemaire C, Bacha H. 2009. Fusarial toxin–induced toxicity in cultured cells and in isolated mitochondria involves PTPC-dependent activation of the mitochondrial pathway of apoptosis. Toxicol Sci. 110(2):363–375.
  • Bradford MM. 1976. A rapid and sensitive method for the estimation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1–2):248–254.
  • Broekaert N, Devreese M, De Mil T, Fraeyman S, Antonissen G, De Baere S, De Backer P, Vermeulen A, Croubels S. 2015. Oral bioavailability, hydrolysis and comparative toxicokinetics of 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol in broiler chicken and pigs. J Agric Food Chem. 63(39):8734–8742.
  • Cano-Sancho G, Gonzalez-Arias CA, Ramos AJ, Sanchis V, Fernandez-Cruz ML. 2015. Cytotoxicity of mycotoxins deoxynivalenol and ochratoxin A on Caco-2 cell line in presence of resveratrol. Toxicol in Vitro. 29(7):1639–1646.
  • Chaudhari M, Jayaraj R, Bhaskar ASB, Rao PL. 2009. Oxidative stress induction by T-2 toxin causes DNA damage and triggers apoptosis via caspase pathway in human cervical cancer cells. Toxicology. 262(2):153–161.
  • Da Silva EO, Gerez JR, Hohmann MS, Verri WA, Bracarense A. 2019. Phytic acid decreases oxidative stress and intestinal lesions induced by fumonisin B1 and deoxynivalenol in intestinal explants of pigs. Toxins. 11(1):18.
  • Del Favero G, Woelflingseder L, Braun D, Puntscher H, Kütt M-L, Dellafiora L, Warth B, Pahlke G, Dall’Asta C, Adam G, et al. 2018. Response of intestinal HT-29 cells to the trichothecene mycotoxin deoxynivalenol and its sulfated conjugates. Toxicol Lett. 295:424–437.
  • Deng C, Ji C, Qin W, Cao X, Zhong J, Li Y, Srinivas S, Feng Y, Deng X. 2016. Deoxynivalenol inhibits proliferation and induces apoptosis in human umbilical vein endothelial cells. Environ Toxicol Pharmacol. 43:232–241.
  • Deyu H, Luqing C, Xianglian L, Pu G, Qirong L, Xu W, Zonghui Y. 2018. Protective mechanisms involving enhanced mitochondrial functions and mitophagy against T-2 toxin-induced toxicities in GH3 cells. Toxicol Lett. 295:41–53.
  • Dinu D, Bodea GO, Ceapa CD, Munteanu MC, Roming FI, Serban AI, Hermenean A, Costache M, Zarnescu O, Dinischiotu A. 2011. Adapted response of the antioxidant defense system to oxidative stress induced by deoxynivalenol in Hek-293 cells. Toxicon. 57(7–8):1023–1032.
  • EFSA (European Food Safety Authority). 2011. Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risks for animal and public health related to the presence of T-2 and HT-2 toxin in food and feed. EFSA J. 9 (12):2187–2481.
  • EFSA (European Food Safety Authority). 2013. Scientific report of EFSA. Deoxynivalenol in food and feed: occurrence and exposure. EFSA J. 11 (10):3379.
  • European Commission (EC). 2006. Commission regulation (EC) No 1881/2006, of 19 December 2006 setting maximum levels for certain contaminants in food stuff. Off J Europ Union L. 364:5–24.
  • Eze UA, Huntriss J, Routledge MN, Gong YY. 2018. Toxicological effects of regulated mycotoxins and persistent organochloride pesticides: In vitro cytotoxic assessment of single and defined mixtures on MA-10 murine Leydig cell line. Toxicol in Vitro. 48:93–103.
  • Fang H, Wu Y, Guo J, Rong J, Ma L, Zhao Z, Zuo D, Peng S. 2012. T-2 toxin induces apoptosis in differentiated murine embryonic stem cells through reactive oxygen species-mediated mitochondrial pathway. Apoptosis. 17(8):807–895.
  • FAOSTAT 2019. Food and agriculture organization corporate statistical database. http://www.fao.org/faostat/en/#data/FBS.
  • Fatima Z, Guo P, Huang D, Lu Q, Wu Q, Dai M, Cheng G, Peng D, Tao Y, Ayub M, et al. 2018. The critical role of p16/Rb pathway in the inhibition of GH3 cell cycle induced by T-2 toxin. Toxicology. 400–401:28–39.
  • Fernández-Blanco C, Font G, Ruiz MJ. 2016. Interaction effects of enniatin B, deoxinivalenol and alternariol in Caco-2 cells. Toxicol Lett. 241:38–48.
  • Fernández-Blanco C, Elmo L, Waldner T, Ruiz MJ. 2018. Cytotoxic effects induced by patulin, deoxynivalenol and toxin T2 individually and in combination in hepatic cells (HepG2). Food Chem Toxicol. 120:12–23.
  • Ferrer E, Juan-García A, Font G, Ruiz MJ. 2009. Reactive oxygen species induced by beauvericin, patulin and zearalenone in CHO-K1 cells. Toxicol in Vitro. 23(8):1504–1509.
  • García-Herranz V, Valdehita A, Navas JM, Fernández-Cruz ML. 2019. Cytotoxicity against fish and mammalian cell lines and endocrine activity of the mycotoxins beauvericin, deoxynivalenol and ochratoxin-A. Food Chem Toxicol. 127:288–297.
  • Hayashi A, Dorantes-Aranda J, Bowman JP, Hallegraeff G. 2018. Combined cytotoxicity of the phycotoxin okadaic acid and mycotoxins on intestinal and neuroblastoma human cell models. Toxins. 10(12):526.
  • Juan-García A, Juan C, Tolosa J, Ruiz MJ. 2019. Effects of deoxynivalenol, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol on parameters associated with oxidative stress in HepG2 cells. Mycotoxin Res. 35(2):197–205.
  • Kalaiselvi P, Rajashree K, Priya LB, Padma VV. 2013. Cytoprotective effect of epigallocatechin-3-gallate against deoxynivalenol-induced toxicity through anti-oxidative and anti-inflammatory mechanisms in HT-29 cells. Food Chem Toxicol. 56:110–118.
  • Lei M, Zhang N, Qi D. 2013. In vitro investigation of individual and combined cytotoxic effects of aflatoxin B1 and other selected mycotoxins on the cell line porcine kidney 15. Exp Toxicol Pathol. 65(7–8):1149–1157.
  • Lei Y, Guanghui Z, Xi W, Yingting W, Xialu L, Fangfang Y, Goldring MB, Xiong G, Lammi MJ. 2017. Cellular responses to T-2 toxin and/or deoxynivalenol that induce cartilage damage are not specific to chondrocytes. Sci Rep. 7(1):1–14.
  • Li D, Ma H, Ye Y, Ji C, Tang X, Ouyang D, Chen J, Li Y, Ma Y. 2014. Deoxynivalenol induces apoptosis in mouse thymic epithelial cells through mitochondria-mediated pathway. Environ Toxicol Pharmacol. 38(1):163–171.
  • Lin X, Shao W, Yu F, Xing K, Liu H, Zhang F, Goldring MB, Lammi MJ, Guo X. 2019. Individual and combined toxicity of T-2 toxin and deoxynivalenol on human C‐28/I2 and rat primary chondrocytes. J Appl Toxicol. 39(2):343–353.
  • Liu X, Guo P, Liu A, Wu Q, Xue X, Dai M, Hao H, Qu W, Xie S, Wang X, et al. 2017. Nitric oxide (NO)-mediated mitochondrial damage plays a critical role in T-2 toxin-induced apoptosis and growth hormone deficiency in rat anterior pituitary GH3 cells. Food Chem Toxicol. 102:11–23.
  • Ma S, Zhao Y, Sun J, Mu P, Deng Y. 2017. miR449a/SIRT1/PGC-1α is necessary for mitochondrial biogenesis induced by T-2 toxin. Front Pharmacol. 8:954
  • Malekinejad H, Aghazadeh-Attari J, Rezabakhsh A, Sattari M, Ghasemsoltani-Momtaz B. 2015. Neurotoxicity of mycotoxins produced in vitro by Penicillium roqueforti isolated from maize and grass silage. Hum Exp Toxicol. 34(10):905–997.
  • Mallebrera B, Juan-Garcia A, Font G, Ruiz MJ. 2016. Mechanisms of beauvericin toxicity and antioxidant cellular defense. Toxicol Lett. 246:28–34.
  • Mishra S, Dwivedi PD, Pandey HP, Das M. 2014. Role of oxidative stress in Deoxynivalenol induced toxicity. Food Chem Toxicol. 72:20–29.
  • Mishra S, Tewari P, Chaudhari BP, Dwivedi PD, Pandey HP, Das M. 2016. Deoxynivalenol induced mouse skin tumor initiation: elucidation of molecular mechanisms in human HaCaT keratinocytes. Int J Cancer. 139(9):2033–2046.
  • Nielsen C, Lippke H, Didier A, Dietrich R, Märtlbauer E. 2009. Potential of deoxynivalenol to induce transcription factors in human hepatoma cells. Mol Nutr Food Res. 53(4):479–491.
  • Nielsen TS, Sørensen IF, Sørensen JL, Søndergaard TE, Purup S. 2016. Cytotoxic and apoptotic effect of mycotoxins in human small intestinal cells. J Anim Sci. 94(suppl_3):234–237.
  • Nordkvist E, Häggblom P. 2014. Fusarium mycotoxin contamination of cereals and beddingstraw at Swedish pig farms. Anim Feed Sci Technol. 198:231–237.
  • Pierron A, Mimoun S, Murate LS, Loiseau N, Lippi Y, Bracarense AP, Liaubet L, Schatzmayr G, Berthiller F, Moll WD, Oswald IP. 2016. Intestinal toxicity of the masked mycotoxin deoxynivalenol-3-β-D-glucoside. Arch Toxicol. 90(8):2037–2046.
  • Prosperini A, Juan-García A, Font G, Ruiz MJ. 2013. Reactive oxygen species involvement in apoptosis and mitochondrial damage in Caco-2 cells induced by enniatins A, A1, B and B1. Toxicol Lett. 222(1):36–44.
  • Ramalingam S, Bahuguna A, Kim M. 2019. The effects of mycotoxin patulin on cells and cellular components. Trends Food Sci Technol. 83:99–113.
  • Rasmussen RR, Rasmussen PH, Larsen TO, Bladt TT, Binderup ML. 2011. In vitro cytotoxicity of fungi spoiling maize silage. Food Chem Toxicol. 49(1):31–44.
  • Romero A, Ares I, Ramos E, Castellano V, Martínez M, Martínez-Larrañaga MR, Anadon A, Martínez MA. 2016. Mycotoxins modify the barrier function of Caco-2 cells through differential gene expression of specific claudin isoforms: Protective effect of illite mineral clay. Toxicology. 353–354:21–33.
  • Ruiz MJ, Franzova P, Juan-García A, Font G. 2011a. Toxicological interactions between the mycotoxins beauvericin, deoxynivalenol and T-2 toxin in CHO-K1 cells in vitro. Toxicon. 58(4):315–326.
  • Ruiz M-J, Macáková P, Juan-García A, Font G. 2011b. Cytotoxic effects of mycotoxin combinations in mammalian kidney cells. Food Chem Toxicol. 49(10):2718–2724.
  • Sahu SC, O'Donnell MW, Wiesenfeld PL. 2010. Comparative hepatotoxicity of deoxynivalenol in rat, mouse and liver cells in culture. J Appl Toxicol. 30(6):566–573.
  • Saint-Cyr MJ, Perrin-Guyomard A, Manceau J, Houée P, Delmas JM, Rolland JG, Laurentie M. 2015. Bioavailability in pig and rat models to establish which is more suitable. Toxins. 7(12):5167–5181.
  • Savard C, Nogues P, Boyer A, Chorfi Y. 2016. Prevention of deoxynivalenol and zearalenone associated oxidative stress does not restore MA-10 Leydig cell functions. Toxicology. 341–343:17–27.
  • Schultze N, Wanka H, Zwicker P, Lindequist U, Haertel B. 2017. Mitochondrial functions of THP-1 monocytes following the exposure to selected natural compounds. Toxicology. 377:57–63.
  • Strasser A, Carra M, Ghareeb K, Awad W, Bohm J. 2013. Protective effects of antioxidants on deoxynivalenol-induced damage in murine lymphoma cells. Mycotoxin Res. 29(3):203–208.
  • Sugiyama K, Kinoshita M, Kamata Y, Minai Y, Tani F, Konishi YS. 2012. Thioredoxin-1 contributes to protection against DON-induced oxidative damage in HepG2 cells. Mycotoxin Res. 28(3):163–168.
  • Sun L-H, Lei M-y, Zhang N-Y, Gao X, Li C, Krumm CS, Qi D-S. 2015. Individual and combined cytotoxic effects of aflatoxin B-1, zearalenone, deoxynivalenol and fumonisin B-1 on BRL 3A rat liver cells. Toxicon. 95:6–12.
  • Taroncher M, Tolosa J, Prosperini A, Ruiz MJ. 2018. In silico and in vitro prediction of the toxicological effects of individual and combined mycotoxins. Food Chem Toxicol. 122:102–194.
  • Wan LYM, Turner PC, El-Nezami H. 2013. Individual and combined cytotoxic effects of Fusarium toxins (deoxynivalenol, nivalenol, zearalenone and fumonisin B1) on swine jejunal epithelial cells. Food Chem Toxicol. 57:276–283.
  • Wang X, Jin C, Zhong Y, Li X, Han J, Xue W, Wu P, Xia X, Peng X. 2018. Glutathione reduction of patulin-evoked cytotoxicity in HEK293 cells by the prevention of oxidative damage and the mitochondrial apoptotic pathway. J Agric Food Chem. 66(29):7775–7785.
  • Wang X, Zuo Z, Zhao C, Zhang Z, Peng G, Cao S, Hu Y, Yu S, Zhong Z, Deng J, et al. 2016. Protective role of selenium in the activities of antioxidant enzymes in piglet splenic lymphocytes exposed to deoxynivalenol. Environ Toxicol Pharmacol. 47:53–61.
  • Weidner M, Hüwel S, Ebert F, Schwerdtle T, Galla HJ, Humpf HU. 2013. Influence of T-2 and HT-2 toxin on the blood-brain barrier in vitro: new experimental hints for neurotoxic effects. PloS One. 8(3):e60484.
  • WHO. 1995. Joint FAO, WHO Expert Committee on Food Additives & World Health Organization. Evaluation of certain food additives and contaminants: forty-fourth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series, No. 859.
  • Woelflingseder L, Del Favero G, Blažević T, Heiss EH, Haider M, Warth B, Adam G, Marko D. 2018. Impact of glutathione modulation on the toxicity of the Fusarium mycotoxins deoxynivalenol (DON), NX-3 and butenolide in human liver cells. Toxicol Lett. 299:104–117.
  • Yang G, Bai Y, Wu X, Sun X, Sun M, Liu X, Yao X, Zhang C, Chu Q, Jiang L, et al. 2018. Patulin induced ROS-dependent autophagic cell death in Human Hepatoma G2 cells. Chem Biol Interact. 288:24–31.
  • Yang J, Zhu C, Ye J, Lv Y, Wang L, Chen Z, Jiang Z. 2019. Protection of porcine intestinal-epithelial cells from deoxynivalenol-induced damage by resveratrol via the Nrf2 signaling pathway. J Agric Food Chem. 67(6):1726–1735.
  • Yang W, Yu M, Fu J, Bao W, Wang D, Hao L, Yao P, Nüssler KA, Yan H, Liu L. 2014. Deoxynivalenol induced oxidative stress and genotoxicity in human peripheral blood lymphocytes. Food Chem Toxicol. 64:383–396.
  • Yuan Z, Matias FB, Yi JE, Wu J. 2016. T-2 toxin-induced cytotoxicity and damage on TM3 Leydig cells. Comp Biochem Physiol C Toxicol Pharmacol. 181–182:47–54.
  • Zhang B, Peng X, Li G, Xu Y, Xia X, Wang Q. 2015. Oxidative stress is involved in Patulin induced apoptosis in HEK293 cells. Toxicon. 94:1–7.
  • Zhang X, Jiang L, Geng C, Cao J, Zhong L. 2009. The role of oxidative stress in deoxynivalenol-induced DNA damage in HepG2 cells. Toxicon. 54(4):513–518.
  • Zhang X, Wang Y, Velkov T, Tang S, Dai C. 2018. T-2 toxin-induced toxicity in neuroblastoma-2a cells involves the generation of reactive oxygen, mitochondrial dysfunction and inhibition of Nrf2/HO-1 pathway. Food Chem Toxicol. 114:88–97.
  • Zhong Y, Jin C, Gan J, Wang X, Shi Z, Xia X, Peng X. 2017. Apigenin attenuates patulin-induced apoptosis in HEK293 cells by modulating ROS-mediated mitochondrial dysfunction and caspase signal pathway. Toxicon. 137:106–113.
  • Zhou SM, Jiang LP, Geng CY, Cao J, Zhong LF. 2010. Patulin-induced oxidative DNA damage and p53 modulation in HepG2 cells. Toxicon. 55(2–3):390–395.
  • Zouaoui N, Mallebrera B, Berrada H, Abid-Essefi S, Bacha H, Ruiz MJ. 2016. Cytotoxic effects induced by patulin, sterigmatocystin and beauvericin on CHO–K1 cells. Food Chem Toxicol. 89:92–103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.