234
Views
2
CrossRef citations to date
0
Altmetric
Articles

Evaluation of doxorubicin-induced early multi-organ toxicity in male CD1 mice by biodistribution of 18F-FDG and 67Ga-citrate. Pilot study

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 546-558 | Received 07 Jan 2021, Accepted 26 May 2021, Published online: 21 Jun 2021

References

  • Abdelrahman AM, Al Suleimani YM, Manoj P, Ashique M, Ali BH, Schupp N. 2020. Effect of infliximab, a tumor necrosis factor-alpha inhibitor, on doxorubicin-induced nephrotoxicity in rats. Naunyn Schmiedebergs Arch Pharmacol. 393(1):121–130.
  • Ahn SS, Hwang SH, Jung SM, Lee SW, Park YB, Yun M, Song JJ. 2017. Evaluation of spleen glucose metabolism Using 18F-FDG PET/CT in patients with febrile autoimmune disease. J Nucl Med. 58(3):507–513.
  • Aktaş I, Özmen Ö, Tutun H, Yalçın A, Türk A. 2020. Artemisinin attenuates doxorubicin induced cardiotoxicity and hepatotoxicity in rats. Biotech Histochem. 95(2):121–128.
  • Allam R, Kumar SV, Darisipudi MN, Anders HJ. 2014. Extracellular histones in tissue injury and inflammation. J Mol Med (Berl)). 92(5):465–472.
  • Altınkaynak Y, Kural B, Akcan BA, Bodur A, Özer S, Yuluğ E, Munğan S, Kaya C, Örem A. 2018. Protective effects of L-theanine against doxorubicin-induced nephrotoxicity in rats. Biomed Pharmacother. 108:1524–1534.
  • Ando A, Nitta K, Ando I, Sanada S, Katsuda S, Tonami N, Hiraki T, Hisada K, Ogawa H. 1990. Mechanism of gallium 67 accumulation in inflammatory tissue. Eur J Nucl Med. 17(1-2):21–27.
  • Araujo FI, Proenca FPP, Ferreira CG, Ventilari SC, Rosado de Castro PH, Moreira RD, Fonseca LMB, Souza SAL, Gutlfilen B. 2015. Use of 99mTc-doxorubicin scintigraphy in females with breast cancer: a pilot study. Br J Radiol. 88(1052):20150268.
  • Ayla S, Seckin I, Tanriverdi G, Cengiz M, Eser M, Soner BC, Oktem G. 2011. Doxorubicin induced nephrotoxicity: protective effect of nicotinamide. Int J Cell Biol. 2011:390238.
  • Bartels K, Grenz A, Eltzschig HK. 2013. Hypoxia and inflammation are two sides of the same coin. Proc Natl Acad Sci USA. 110(46):18351–18352.
  • Basu S, Zhuang H, Torigian DA, Rosenbaum J, Chen W, Alavi A. 2009. Functional imaging of inflammatory diseases using nuclear medicine techniques. Semin Nucl Med. 39(2):124–145.
  • Batatinha H, Souza C, Lima E, Alonso-Vale MI, Cruz M, Da Cunha R, Lira F, Rosa J. 2014. Adipose tissue homeostasis is deeply disrupted by doxorubicin treatment. Cancer Metab. 2(S1):P5.
  • Biondo LA, Lima Junior EA, Souza CO, Cruz MM, Cunha RD, Alonso-Vale MI, Oyama LM, Nascimento CM, Pimentel GD, Dos Santos RV, et al. 2016. Impact of doxorubicin treatment on the physiological functions of white adipose tissue. PLoS One. 11(3):e0151548.
  • Bjørndal B, Burri L, Staalesen V, Skorve J, Berge RK. 2011. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes. 2011:490650.
  • Bolotta A, Abruzzo PM, Baldassarro VA, Ghezzo A, Scotlandi K, Marini M, Zucchini C. 2019. New insights into the hepcidin-ferroportin axis and iron homeostasis in iPSC-derived cardiomyocytes from friedreich's ataxia patient. Oxid Med Cell Longev. 2019:7623023.
  • Boukhenouna S, Wilson MA, Bahmed K, Kosmider B. 2018. Reactive oxygen species in chronic obstructive pulmonary disease. Oxid Med Cell Longev. 2018:5730395.
  • Brazzolotto X, Andriollo M, Guiraud P, Favier A, Moulis JM. 2003. Interactions between doxorubicin and the human iron regulatory system. Biochim Biophys Acta. 1593(2-3):209–218.
  • Bulten BF, Sollini M, Boni R, Massri K, de Geus-Oei LF, van Laarhoven HWM, Slart Riemer HJA, Erba PA. 2019. Cardiac molecular pathways influenced by doxorubicin treatment in mice. Sci Rep. 9(1):2514.
  • Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ. 2014. Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med Res Rev. 34(1):106–135.
  • Chen T, Shen HM, Deng ZY, Yang ZZ, Zhao RL, Wang L, Feng ZP, Liu C, Li WH, Liu ZJ. 2017. A herbal formula, SYKT, reverses doxorubicin‑induced myelosuppression and cardiotoxicity by inhibiting ROS‑mediated apoptosis. Mol Med Rep. 15(4):2057–2066.
  • Chen X, Zhang Y, Zhu Z, Liu H, Guo H, Xiong CH, Xie K, Zhang X, Su S. 2016. Protective effect of berberine on doxorubicin‑induced acute hepatorenal toxicity in rats . Mol Med Rep. 13(5):3953–3960.
  • Chitambar CR. 2016. Gallium and its competing roles with iron in biological systems. Biochim Biophys Acta. 1863(8):2044–2053.
  • Chusyd DE, Wang D, Huffman DM, Nagy TR. 2016. Relationships between rodent white adipose white pads and human white adipose fats depots. Front Nutr. 3:10.
  • Cutone A, Luigi R, Ianiro G, Lepant MS, Bonaccorsi di Patti MC, Valenti P, Musci G. 2020. Lactoferrin’s anti-cancer properties: safety selectivity, and wide range of action. Biomolecules. 10(3):456.
  • De Angelis A, Cappetta D, Berrino L, Urbanek K. 2018. Doxorubicin cardiotoxicity: multiple targets and translational perspectives. In: Tan W. editor. Cardiotoxicity. London, UK: IntechOpen. Available from: https://www.intechopen.com/books/cardiotoxicity/doxorubicin-cardiotoxicity-multiple-targets-and-translational-perspectives
  • de Lima Junior EA, Yamashita AS, Pimentel GD, De Sousa LG, Santos RV, Gonçalves CL, Streck EL, de Lira FS, Rosa Neto JC. 2016. Doxorubicin caused severe hyperglycaemia and insulin resistance, mediated by inhibition in AMPk signalling in skeletal muscle. J Cachexia Sarcopenia Muscle. 7(5):615–625.
  • Eirin A, Lerman A, Lerman LO. 2017. The emerging role of mitochondrial targeting in kidney disease. Handb Exp Pharmacol. 240:229–250.
  • El-Sayed EM, Mansour AM, El-Sawy WS. 2017. Protective effect of proanthocyanidins against doxorubicin-induced nephrotoxicity in rats. J Biochem Mol Toxicol. 31(11):e21965.
  • El-Sheikh AA, Morsy MA, Mahmoud MM, Rifaai RA, Abdelrahman AM. 2012. Effect of coenzyme-q10 on Doxorubicin-induced nephrotoxicity in rats. Adv Pharmacol Sci. 2012:981461.
  • Elsherbiny NM, El-Sherbiny M. 2014. Thymoquinone attenuates Doxorubicin-induced nephrotoxicity in rats: role of Nrf2 and NOX4. Chem Biol Interact. 223:102–108.
  • Engelstad B, Luk SS, Hattner RS. 1982. Altered 67Ga citrate distribution in patients with multiple red blood cell transfusions. AJR Am J Roentgenol. 139(4):755–759.
  • Ertay T, Sencan Eren M, Karaman M, Oktay G, Durak H. 2017. 18F-FDG-PET/CT in initiation and progression of inflammation and infection. Mirt. 26(2):47–52.
  • Fernández-Real JM, McClain D, Manco M. 2015. Mechanisms linking glucose homeostasis and iron metabolism toward the onset and progression of type 2 diabetes. Diabetes Care. 38(11):2169–2176.
  • Gammella E, Maccarinelli F, Buratti P, Recalcati S, Cairo G. 2014. The role of iron in anthracycline cardiotoxicity. Front Pharmacol. 5:25.
  • Ghigo A, Li M, Hirsch E. 2016. New signal transduction paradigms in anthracycline-induced cardiotoxicity. Biochim Biophys Acta. 1863(7 Pt B):1916–1925.
  • Ghio AJ, Turi EL, Yang F, Garrick LM, Garrick MD. 2006. Iron homeostasis in the lung. Biol Res. 39(1):67–77.
  • Giraudo C, Evangelista L, Fraia AS, Lupi A, Quaia E, Cecchin D, Casali M. 2020. Molecular imaging of pulmonary inflammation and infection. IJMS. 21(3):894.
  • Gotama KT, Soetikno V, Louisa M, Arozal W. 2019. Hepatoprotective effects of L-citrulline against doxorubicin-induced liver damage in rats: an analysis of serum biomarkers. Int J App Pharm. 11(1):230–233.
  • Gül SS, Aygün H. 2019. Cardioprotective effect of vitamin D and melatonin on doxorubicin-induced cardiotoxicity in rat model: an electrocardiographic, scintigraphic and biochemical study. European Res. j. 5(4):649–657.
  • Guven C, Sevgiler Y, Taskin E. 2018. Mitochondrial Dysfunction Associated with Doxorubicin. In: Taskin E, Guven C, Sevgiler Y. editors Mitochondrial Diseases. London, UK: Intechopen. Available from: https://www.intechopen.com/books/mitochondrial-diseases/mitochondrial-dysfunction-associated-with-doxorubicin
  • Heart E, Karandrea S, Liang X, Balke ME, Beringer PA, Bobczynski EM, Zayas-Bazán Burgos D, Richardson T, Gray JP. 2016. Mechanisms of doxorubicin toxicity in pancreatic β-cells. Toxicol Sci. 152(2):395–405.
  • Heeba GH, Mahmoud ME. 2016. Dual effects of quercetin in doxorubicin-induced nephrotoxicity in rats and its modulation of the cytotoxic activity of doxorubicin on human carcinoma cells. Environ Toxicol. 31(5):624–636.
  • Hrelia S, Fiorentini D, Maraldi T, Angeloni C, Bordoni A, Biagi PL, Hakim G. 2002. Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes. Biochim Biophys Acta. 1567(1-2):150–156.
  • Jadapalli JK, Wright GW, Kain V, Sherwani MA, Sonkar R, Yusuf N, Halade GV. 2018. Doxorubicin triggers splenic contraction and irreversible dysregulation of COX and LOX that alters the inflammation-resolution program in the myocardium . Am J Physiol Heart Circ Physiol. 315(5):H1091–H1100.
  • Kabel AM. 2018. Zinc/alogliptin combination attenuates testicular toxicity induced by doxorubicin in rats: Role of oxidative stress, apoptosis and TGF-β1/NF-κB signaling. Biomed Pharmacother. 97:439–449.
  • Kalyanaraman B. 2020. Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biol. 29:101394.
  • Keeney JTR, Ren X, Warrier G, Noel T, Powell DK, Brelsfoard JM, Sultana R, Saatman KE, St. Clair DK, Butterfield DA. 2018. Doxorubicin-induced elevated oxidative stress and neurochemical alterations in brain and cognitive decline: protection by MESNA and insights into mechanisms of chemotherapy-induced cognitive impairment (“ ("chemobrain")”). Oncotarget. 9(54):30324–30339.
  • Khames A, Khalaf MM, Gad AM, Abd El-Raouf OM. 2017. Ameliorative effects of sildenafil and/or febuxostat on doxorubicin-induced nephrotoxicity in rats. Eur J Pharmacol. 805:118–124.
  • Kiefmann R, Rifkind JM, Nagababu E, Bhattacharya J. 2008. Red blood cells induce hypoxic lung inflammation. Blood. 111(10):5205–5214.
  • Kim DR, Lee SY, Kim JS, Kim YG, Moon JY, Lee SH, Lee TW, Ihm CG, Jeong KH. 2017. Ameliorating Effect of Gemigliptin on Renal Injury in Murine Adriamycin-Induced Nephropathy. Biomed Res Int. 2017:7275109.
  • Kim J, Wessling-Resnick M. 2012. The role of iron metabolism in lung inflammation and injury. J Aller Ther. 01(S4):004.
  • Kotamraju S, Chitambar CR, Kalivendi SV, Joseph J, Kalyanaraman B. 2002. Transferrin receptor-dependent iron uptake is responsible for doxorubicin-mediated apoptosis in endothelial cells: role of oxidant-induced iron signaling in apoptosis. J Biol Chem. 277(19):17179–17187.
  • Kubota K, Tanaka N, Miyata Y, Ohtsu H, Nakahara T, Sakamoto S, Kudo T, Nishiyama Y, Tateishi U, Murakami K, et al. 2021. Comparison of 18F-FDG PET/CT and 67Ga-SPECT for the diagnosis of fever of unknown origin: a multicenter prospective study in Japan. Ann Nucl Med. 35(1):31–46.
  • Kuhn LC. 2015. Iron regulatory proteins and their role in controlling iron metabolism. Metallomics. 7(2):232–243.
  • Lahoti TS, Patel D, Thekkemadom V, Beckett R, Ray SD. 2012. Doxorubicin-induced in vivo nephrotoxicity involves oxidative stress-mediated multiple pro- and anti-apoptotic signaling pathways. Curr Neurovasc Res. 9(4):282–295.
  • Lane DJR, Merlot AM, Huang MLH, Bae DH, Jansson PJ, Sahni S, Kalinowski DS, Richardson DR. 2015. Cellular iron uptake, trafficking and metabolism: key molecules and mechanisms and their roles in disease. Biochim Biophys Acta. 1853(5):1130–1144.
  • Martínez-Rodríguez I, Carril JM. 2013. Update on the use of PET radiopharmaceuticals in inflammatory disease. Rev Esp Med Nucl Imagen Mol. 32(6):378–386.
  • Mathis D, Shoelson SE. 2011. Immunometabolism: an emerging frontier. Nat Rev Immunol. 11(2):81–83.
  • Minchin RF, Johnston MR, Schuller HM, Aiken MA, Boyd MR. 1988. Pulmonary toxicity of doxorubicin administered by in situ isolated lung perfusion in dogs. Cancer. 61(7):1320–1325.
  • Minotti G, Cairo G, Monti E. 1999. Role of iron in anthracycline cardiotoxicity: new tunes for an old song? Faseb J. 13(2):199–212.
  • Mohamed RH, Karam RA, Amer MG. 2011. Epicatechin attenuates doxorubicin-induced brain toxicity: critical role of TNF-α, iNOS and NF-κB. Brain Res Bull. 86(1-2):22–28.
  • Monroy-González AG, Sánchez-Escalona D, Telich-Tarriba JE, Marroquín-Donday L, Juárez-Orozco L, Peñarrieta-Daher E, Valles-Terrazas M, Jiménez M, Alexánderson E. 2012. El uso del PET con 18F-FDG en Cardiología. UPdate. 1(2):33–39.
  • National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. 2011. Guide for the Care and Use of Laboratory Animals. 8th edition. Washington (DC): National Academies Press (US). Available from: https://www.ncbi.nlm.nih.gov/books/NBK54050/ doi:https://doi.org/10.17226/12910
  • Nebigil CG, Désaubry L. 2018. Updates in anthracycline-mediated cardiotoxicity. Front Pharmacol. 9:1262.
  • Neves J, Haider T, Gassmann M, Muckenthaler MU. 2019. Iron homeostasis in the lungs – a balance between health and Disease. Pharmaceuticals. 12(1):5.
  • Nogués IA, Bello AP, Benito IH, Velasco RP, Dólera TM, Navarro AM. 2009. Interstitial nephritis demonstrated by 67Ga-citrate scintigraphy within a diagnosis of fever of unknown origin. Rev Esp Med Nucl. 28(5):242–245.
  • Norma Oficial Mexicana -NOM-062-ZOO-1999. 2002. Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Gac Méd Méx. 138(3):295–298.
  • Patil L, Balaraman R. 2009. Effect of melatonin on doxorubicin induced testicular damage in rats. Int J PharmTech Res. 1(3):879–884.
  • Pereira GC, Silva AM, Diogo CV, Carvalho FS, Monteiro P, Oliveira PJ. 2011. Drug-induced Cardiac mitochondrial toxicity and protection: from doxorubicin to carvedilol. Curr Pharm Des. 17(20):2113–2129.
  • Pugazhendhi A, Edison TNJI, Velmurugan BK, Jacob JA, Karuppusamy I. 2018. Toxicity of Doxorubicin (Dox) to different experimental organ systems. Life Sci. 200:26–30.
  • Rashid S, Ali N, Nafees S, Ahmad ST, Arjumand W, Hasan SK, Sultana S. 2013. Alleviation of doxorubicin-induced nephrotoxicity and hepatotoxicity by chrysin in Wistar rats. Toxicol Mech Methods. 23(5):337–345.
  • Razaq T, Nisar H, Roohi S, Shehzad A, Ahmad I. 2017. Administration of 99mTc-DTPA in combination with doxorubicin alters the radiopharmaceutical biodistribution in rats. Iran J Nucl Med. 25(2):122–128.
  • Refaie MM, Amin EF, El-Tahawy NF, Abdelrahman AM. 2016. Possible protective effect of diacerein on doxorubicin-induced nephrotoxicity in rats. J Toxicol. 2016:9507563.
  • Rosen ED, Spiegelman BM. 2014. What we talk about when we talk about fat? Cell. 156 (1-2):20–44.
  • Siques P, Brito J, Pena E. 2018. Reactive oxygen species and pulmonary vasculature during hypobaric hypoxia. Front Physiol. 9:865.
  • Siswanto S, Arozal W, Juniantito V, Grace A, Agustini FD. Nafrialdi 2016. The effect of mangiferin against brain damage caused by oxidative stress and inflammation induced by doxorubicin. HAYATI J Biosci. 23(2):51–55.
  • Stěrba M, Popelová O, Vávrová A, Jirkovský E, Kovaříková P, Geršl V, Simůnek T. 2013. Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxid Redox Signal. 18(8):899–929.
  • Su Z, Ye J, Qin Z, Ding X. 2015. Protective effects of madecassoside against Doxorubicin induced nephrotoxicity in vivo and in vitro. Sci Rep. 5:18314.
  • Sultana R, Di Domenico F, Tseng M, Cai J, Noel T, Chelvarajan RL, Pierce WD, Cini C, Bondada S, St Clair DK, et al. 2010. Doxorubicin-induced thymus senescence. J Proteome Res. 9(12):6232–6241.
  • Tacar O, Sriamornsak P, Dass CR. 2013. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 65(2):157–170.
  • Talbot SR, Biernot S, Bleich A, van Dijk RM, Ernst L, Häger C, Helgers SOA, Koegel B, Koska I, Kuhla A, el al. 2020. Defining body-weight reduction as a humane endpoint: a critical appraisal. Lab Anim. 54(1):99–110.
  • Tangpong J, Miriyala S, Noel T, Sinthupibulyakit C, Jungsuwadee P, St Clair DK. 2011. Doxorubicin-induced central nervous system toxicity and protection by xanthone derivative of Garcinia mangostana. Neuroscience. 175:292–299.
  • Tangpong J, Sompol P, Vore M, St Clair W, Butterfield DA, St Clair DK. 2008. Tumor necrosis factor alpha-mediated nitric oxide production enhances manganese superoxide dismutase nitration and mitochondrial dysfunction in primary neurons: an insight into the role of glial cells. Neuroscience. 151(2):622–629.
  • Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T, Schlattner U. 2006. New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J Mol Cell Cardiol. 41(3):389–405.
  • Torres VM, Simic VD. 2012. Doxorubicin-induced oxidative injury of cardiomyocytes – do we have right strategies for prevention? In: Fiuza M, editor. Cardiotoxicity of oncologic treatments. London, UK: Intechopen. Available from: https://www.intechopen.com/books/cardiotoxicity-of-oncologic-treatments/doxorubicin-induced-oxidative-injury-of-cardiomyocytes-do-we-have-right-strategies-for-prevention
  • Tsan MF. 1985. Mechanism of gallium-67 accumulation in inflammatory lesions. J Nucl Med. 26(1):88–92.
  • van Beek L, van Klinken JB, Pronk AC, van Dam AD, Dirven E, Rensen PC, Koning F, Willems van Dijk K, van Harmelen V. 2015. The limited storage capacity of gonadal adipose tissue directs the development of metabolic disorders in male C57Bl/6J mice. Diabetologia. 58(7):1601–1609.
  • Vapa I, Torres VM, Djordjevic A, Vasovic V, Srdjenovic B, Simic VD, Popović JK. 2012. Effect of fullerenol C(60)(OH) (24) on lipid peroxidation of kidneys, testes and lungs in rats treated with ted with doxorubicine. Eur J Drug Metab Pharmacokinet. 37(4):301–307.
  • Walker VJ, Agarwal A. 2016. Targeting iron homeostasis in acute kidney injury. Semin Nephrol. 36(1):62–70.
  • Weiner RE, Spencer RP, Dambro TJ, Klein BE. 1992. Gallium-67 distribution in a man with a decrease in both transferrin and hepatic gallium-67 concentration. J Nucl Med. 33(9):1701–1703.
  • Yurekli Y, Unak P, Ertay T, Biber Z, Medine I, Teksoz S. 2005. Radiopharmaceutical model using 99mTc-MIBI to evaluate amifostine protection against doxorubicin cardiotoxicity in rats. Ann Nucl Med. 19(3):197–200.
  • Zamora E, Valdivia AY, Zalta B, Zuckier LS. 2020. [67Ga] Ga-citrate and COVID-19-associated pneumonia: an unexpected absence of uptake. Eur J Nucl Med Mol Imaging. 47(9):2207–2208.
  • Zhang H, Xu A, Sun X, Yang Y, Zhang L, Bai H, Ben J, Zhu X, Li X, Yang Q, et al. 2020. Self-Maintenance of Cardiac Resident Reparative Macrophages Attenuates Doxorubicin-Induced Cardiomyopathy Through the SR-A1-c-Myc Axis. Circ Res. 127(5):610–627.
  • Zhao L, Zhang B. 2017. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci Rep. 7:44735.
  • Zhao X, Zhang J, Tong N, Chen Y, Luo Y. 2012. Protective effects of berberine on doxorubicin-induced hepatotoxicity in mice. Biol Pharm Bull. 35(5):796–800.
  • Zuckier LS, Valdivia AY, Zamora E. 2020. Does gallium-citrate have yet another story to tell? Lessons relevant to the COVID-19 era. Eur J Nucl Med Mol Imaging. 47(9):2059–2061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.