188
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

The role of levosimendan in phosphine-induced cardiotoxicity: evaluation of electrocardiographic, echocardiographic, and biochemical parameters

, , , , , , , ORCID Icon, , , & ORCID Icon show all
Pages 631-643 | Received 29 Mar 2021, Accepted 27 Jun 2021, Published online: 01 Aug 2021

References

  • Abdolghaffari AH, Baghaei A, Solgi R, Gooshe M, Baeeri M, Navaei-Nigjeh M, Hassani S, Jafari A, Rezayat SM, Dehpour AR, et al. 2015. Molecular and biochemical evidences on the protective effects of triiodothyronine against phosphine-induced cardiac and mitochondrial toxicity. Life Sci. 139:30–39.
  • Akhtar MS, Pillai KK, Hassan MQ, Dhyani N, Ismail MV, Najmi AK. 2016. Levosimendan reduces myocardial damage and improves cardiodynamics in streptozotocin induced diabetic cardiomyopathy via SERCA2a/NCX1 pathway. Life Sci. 153:55–65.
  • Akhtar MS, Pillai KK, Hassan Q, Ansari SH, Ali J, Akhtar M, Najmi AK. 2016. Levosimendan suppresses oxidative injury, apoptotic signaling and mitochondrial degeneration in streptozotocin-induced diabetic cardiomyopathy. Clin Exp Hypertens. 38(1):10–22.
  • Akkaoui M, Achour S, Abidi K, Himdi B, Madani A, Zeggwagh AA, Abouqal R. 2007. Reversible myocardial injury associated with aluminum phosphide poisoning. Clin Toxicol. 45(6):728–731.
  • Alkan M, Çelik A, Bilge M, Kiraz HA, Kip G, Özer A, Şıvgın V, Erdem Ö, Arslan M, Kavutçu M. 2015. The effect of levosimendan on lung damage after myocardial ischemia reperfusion in rats in which experimental diabetes was induced. J Surg Res. 193(2):920–925.
  • Aminzadeh A, Mehrzadi S. 2018. Cardioprotective effect of levosimendan against homocysteine-induced mitochondrial stress and apoptotic cell death in H9C2. Biochem Biophys Res Commun. 507(1–4):395–399.
  • Anand R, Binukumar B, Gill KD. 2011. Aluminum phosphide poisoning: an unsolved riddle. J Appl Toxicol. 31(6):499–505.
  • Anand R, Kumari P, Kaushal A, Bal A, Wani WY, Sunkaria A, Dua R, Singh S, Bhalla A, Gill KD. 2012. Effect of acute aluminum phosphide exposure on rats – a biochemical and histological correlation. Toxicol Lett. 215(1):62–69.
  • Asghari MH, Moloudizargari M, Baeeri M, Baghaei A, Rahimifard M, Solgi R, Jafari A, Aminjan HH, Hassani S, Moghadamnia AA, et al. 2017. On the mechanisms of melatonin in protection of aluminum phosphide cardiotoxicity. Arch Toxicol. 91(9):3109–3120.
  • Baeeri M, Shariatpanahi M, Baghaei A, Ghasemi-Niri SF, Mohammadi H, Mohammadirad A, Hassani S, Bayrami Z, Hosseini A, Rezayat SM, et al. 2013. On the benefit of magnetic magnesium nanocarrier in cardiovascular toxicity of aluminum phosphide. Toxicol Ind Health. 29(2):126–135.
  • Baghaei A, Solgi R, Jafari A, Abdolghaffari AH, Golaghaei A, Asghari MH, Baeeri M, Ostad SN, Sharifzadeh M, Abdollahi M. 2016. Molecular and biochemical evidence on the protection of cardiomyocytes from phosphine-induced oxidative stress, mitochondrial dysfunction and apoptosis by acetyl-l-carnitine. Environ Toxicol Pharmacol. 42:30–37.
  • Basel H, Kavak S, Demir H, Meral I, Ekim H, Bektas H. 2013. Effect of levosimendan injection on oxidative stress of rat myocardium. Toxicol Ind Health. 29(5):435–440.
  • Bogle R, Theron P, Brooks P, Dargan P, Redhead J. 2006. Aluminium phosphide poisoning. Emerg Med J. 23(1):e03–e03.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1–2):248–254.
  • Brunner SN, Bogert NV, Schnitzbauer AA, Juengel E, Moritz A, Werner I, Kornberger A, Beiras-Fernandez A. 2017. Levosimendan protects human hepatocytes from ischemia-reperfusion injury. PLoS One. 12(11):e0187839.
  • CDC. 2017, November 9. PHOSPHINE: Lung Damaging Agent. The National Institute for Occupational Safety and Health; [accessed 2021 Jun 30]. https://www.cdc.gov/niosh/ershdb/emergencyresponsecard_29750035.html.
  • Cooperstein S, Lazarow A. 1951. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 189(2):665–670.
  • Du Toit E, Hofmann D, McCarthy J, Pineda C. 2001. Effect of levosimendan on myocardial contractility, coronary and peripheral blood flow, and arrhythmias during coronary artery ligation and reperfusion in the in vivo pig model. Heart. 86(1):81–87.
  • Du Toit E, Muller C, McCarthy J, Opie L. 1999. Levosimendan: effects of a calcium sensitizer on function and arrhythmias and cyclic nucleotide levels during ischemia/reperfusion in the Langendorff-perfused guinea pig heart. J Pharmacol Exp Ther. 290(2):505–514.
  • Efentakis P, Varela A, Chavdoula E, Sigala F, Sanoudou D, Tenta R, Gioti K, Kostomitsopoulos N, Papapetropoulos A, Tasouli A, et al. 2020. Levosimendan prevents doxorubicin-induced cardiotoxicity in time- and dose-dependent manner: implications for inotropy . Cardiovasc Res. 116(3):576–591.
  • Egan JR, Clarke AJ, Williams S, Cole AD, Ayer J, Jacobe S, Chard RB, Winlaw DS. 2006. Levosimendan for low cardiac output: a pediatric experience. J Intensive Care Med. 21(3):183–187.
  • Eriksson O, Pollesello P, Haikala H. 2004. Effect of levosimendan on balance between ATP production and consumption in isolated perfused guinea-pig heart before ischemia or after reperfusion. J Cardiovasc Pharmacol. 44(3):316–321.
  • Fries M, Ince C, Rossaint R, Bleilevens C, Bickenbach J, Rex S, Mik EG. 2008. Levosimendan but not norepinephrine improves microvascular oxygenation during experimental septic shock. Crit Care Med. 36(6):1886–1891.
  • Gecit I, Kavak S, Yüksel MB, Basel H, Bektaş H, Gümrükçüoğlu HA, Meral I, Demir H. 2014. Effect of short-term treatment with levosimendan on oxidative stress in renal tissues of rats. Toxicol Ind Health. 30(1):47–51.
  • Grossini E, Caimmi PP, Platini F, Molinari C, Uberti F, Cattaneo M, Valente G, Mary DA, Vacca G, Tessitore L. 2010. Modulation of programmed forms of cell death by intracoronary levosimendan during regional myocardial ischemia in anesthetized pigs. Cardiovasc Drugs Ther. 24(1):5–15.
  • Grossini E, Farruggio S, Pierelli D, Bolzani V, Rossi L, Pollesello P, Monaco C. 2020. Levosimendan improves oxidative balance in cardiogenic shock/low cardiac output patients. J Clin Med. 9(2):373.
  • Gupta M, Malik A, Sharma V. 1995. Cardiovascular manifestations in aluminium phosphide poisoning with special reference to echocardiographic changes. J Assoc Physicians India. 43(11):773–774.
  • Haghi-Aminjan H, Baeeri M, Rahimifard M, Alizadeh A, Hodjat M, Hassani S, Asghari MH, Abdollahi A, Didari T, Hosseini R, et al. 2018. The role of minocycline in alleviating aluminum phosphide-induced cardiac hemodynamic and renal toxicity. Environ Toxicol Pharmacol. 64:26–40.
  • Haghi Aminjan H, Abtahi SR, Hazrati E, Chamanara M, Jalili M, Paknejad B. 2019. Targeting of oxidative stress and inflammation through ROS/NF-kappaB pathway in phosphine-induced hepatotoxicity mitigation. Life Sci. 232:116607.
  • Hajjej Z, Meddeb B, Sellami W, Labbene I, Morelli A, Ferjani M. 2017. Effects of levosimendan on cellular metabolic alterations in patients with septic shock: a randomized controlled pilot study. Shock. 48(3):307–312.
  • Hosseini A, Abdollahi M, Hassanzadeh G, Rezayat M, Hassani S, Pourkhalili N, Tabrizian K, Khorshidahmad T, Beyer C, Sharifzadeh M. 2011. Protective effect of magnesium-25 carrying porphyrin-fullerene nanoparticles on degeneration of dorsal root ganglion neurons and motor function in experimental diabetic neuropathy. Basic Clin Pharmacol Toxicol. 109(5):381–386.
  • Jafari A, Baghaei A, Solgi R, Baeeri M, Chamanara M, Hassani S, Gholami M, Ostad SN, Sharifzadeh M, Abdollahi M. 2015. An electrocardiographic, molecular and biochemical approach to explore the cardioprotective effect of vasopressin and milrinone against phosphide toxicity in rats. Food Chem Toxicol. 80:182–192.
  • Kandemir U, Maltepe F, Ugurlu B, Gokmen N, Celik A. 2013. The effects of levosimendan and dobutamine in experimental bupivacaine-induced cardiotoxicity. BMC Anesthesiol. 13(1):28.
  • Karami-Mohajeri S, Jafari A, Abdollahi M. 2013. Comprehensive review of the mechanistic approach and related therapies to cardiovascular effects of aluminum phosphide. Int J Pharmacol. 9(8):493–500.
  • Kiraz HA, Poyraz F, Kip G, Erdem Ö, Alkan M, Arslan M, Özer A, Şivgin V, Çomu FM. 2015. The effect of levosimendan on myocardial ischemia–reperfusion injury in streptozotocin-induced diabetic rats. Libyan J Med. 10(1):29269.
  • Lall S, Peshin S, Mitra S. 2000. Methemoglobinemia in aluminium phosphide poisoning in rats. Indian J Exp Biol. 38(1):95–97.
  • Leppikangas H, Ruokonen E, Rutanen J, Kiviniemi V, Lindgren L, Kurola J. 2009. Levosimendan as a rescue drug in experimental propranolol-induced myocardial depression: a randomized study. Ann Emerg Med. 54(6):811–817.e813.
  • Li L-L, Wei L, Zhang N, Wei W-Y, Hu C, Deng W, Tang Q-Z. 2020. Levosimendan protects against doxorubicin-induced cardiotoxicity by regulating the PTEN/Akt pathway. Biomed Res Int. 2020:8593617.
  • Lilleberg J, Ylönen V, Lehtonen L, Toivonen L. 2004. The calcium sensitizer levosimendan and cardiac arrhythmias: an analysis of the safety database of heart failure treatment studies. Scand Cardiovasc J. 38(2):80–84.
  • Markou T, Makridou Z, Galatou E, Lazou A. 2011. Multiple signalling pathways underlie the protective effect of levosimendan in cardiac myocytes. Eur J Pharmacol. 667(1–3):298–305.
  • Maytin M, Colucci WS. 2005. Cardioprotection: a new paradigm in the management of acute heart failure syndromes. Am J Cardiol. 96(6):26–31.
  • Mehrpour O, Jafarzadeh M, Abdollahi M. 2012. A systematic review of aluminium phosphide poisoning. Arh Hig Rada Toksikol. 63(1):61–73.
  • Moeini-Nodeh S, Rahimifard M, Baeeri M, Abdollahi M. 2017. Functional improvement in rats’ pancreatic islets using magnesium oxide nanoparticles through antiapoptotic and antioxidant pathways. Biol Trace Elem Res. 175(1):146–155.
  • Moghadamnia AA. 2012. An update on toxicology of aluminum phosphide. Daru. 20(1):25.
  • Mohan B, Singh B, Gupta V, Ralhan S, Gupta D, Puri S, Goyal A, Aslam N, Tandon R, Wander GS. 2016. Outcome of patients supported by extracorporeal membrane oxygenation for aluminum phosphide poisoning: an observational study. Indian Heart J. 68(3):295–301.
  • Momtaz S, Baeeri M, Rahimifard M, Haghi-Aminjan H, Hassani S, Abdollahi M. 2019. Manipulation of molecular pathways and senescence hallmarks by natural compounds in fibroblast cells. J Cell Biochem. 120(4):6209–6222.
  • Najafi M, Hooshangi Shayesteh MR, Mortezaee K, Farhood B, Haghi-Aminjan H. 2020. The role of melatonin on doxorubicin-induced cardiotoxicity: a systematic review. Life Sci. 241:117173.
  • Nieminen MS, Pollesello P, Vajda G, Papp Z. 2009. Effects of levosimendan on the energy balance: preclinical and clinical evidence. J Cardiovasc Pharmacol. 53(4):302–310.
  • Nobakht-Haghighi N, Rahimifard M, Baeeri M, Rezvanfar MA, Moini Nodeh S, Haghi-Aminjan H, Hamurtekin E, Abdollahi M. 2018. Regulation of aging and oxidative stress pathways in aged pancreatic islets using alpha-lipoic acid. Mol Cell Biochem. 449(1-2):267–276. eng.
  • Papp JG, Pollesello P, Varró AF, Végh ÁS. 2006. Effect of levosimendan and milrinone on regional myocardial ischemia/reperfusion-induced arrhythmias in dogs. J Cardiovasc Pharmacol Ther. 11(2):129–135.
  • Paraskevaidis IA, Parissis JT, Th Kremastinos D. 2005. Anti-inflammatory and anti-apoptotic effects of levosimendan in decompensated heart failure: a novel mechanism of drug-induced improvement in contractile performance of the failing heart. Curr Med Chem Cardiovasc Hematol Agents. 3(3):243–247.
  • Parissis JT, Andreadou I, Bistola V, Paraskevaidis I, Filippatos G, Kremastinos DT. 2008. Novel biologic mechanisms of levosimendan and its effect on the failing heart. Expert Opin Investig Drugs. 17(8):1143–1150.
  • Pataricza J, Krassói I, Höhn J, Kun A, Papp JG. 2003. Functional role of potassium channels in the vasodilating mechanism of levosimendan in porcine isolated coronary artery. Cardiovasc Drugs Ther. 17(2):115–121.
  • Rahimifard M, Baeeri M, Bahadar H, Moini-Nodeh S, Khalid M, Haghi-Aminjan H, Mohammadian H, Abdollahi M. 2020. Therapeutic effects of gallic acid in regulating senescence and diabetes; an in vitro study. Molecules. 25(24):5875.
  • Rogatzki MJ, Ferguson BS, Goodwin ML, Gladden LB. 2015. Lactate is always the end product of glycolysis. Front Neurosci. 9:22.
  • Schlüter KD, Schreiber D. 2005. Adult ventricular cardiomyocytes: isolation and culture. Methods Mol Biol. 290:305–314.
  • Scoote M, Williams AJ. 2004. Myocardial calcium signalling and arrhythmia pathogenesis. Biochem Biophys Res Commun. 322(4):1286–1309.
  • Shadnia S, Rahimi M, Pajoumand A, Rasouli M-H, Abdollahi M. 2005. Successful treatment of acute aluminium phosphide poisoning: possible benefit of coconut oil. Hum Exp Toxicol. 24(4):215–218.
  • Shadnia S, Soltaninejad K, Hassan Ian-Moghadam H, Sadeghi A, Rahimzadeh H, Zamani N, Ghasemi-Toussi A, Abdollahi M. 2011. Methemoglobinemia in aluminum phosphide poisoning. Hum Exp Toxicol. 30(3):250–253.
  • Shah V, Baxi S, Vyas T. 2009. Severe myocardial depression in a patient with aluminium phosphide poisoning: a clinical, electrocardiographical and histopathological correlation. Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of. Indian J Crit Care Med. 13(1):41–43.
  • Sherwood S, Hirst J. 2006. Investigation of the mechanism of proton translocation by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria: does the enzyme operate by a Q-cycle mechanism? Biochem J. 400(3):541–550.
  • Solgi R, Baghaei A, Golaghaei A, Hasani S, Baeeri M, Navaei M, Ostad SN, Hosseini R, Abdollahi M. 2015. Electrophysiological and molecular mechanisms of protection by iron sucrose against phosphine-induced cardiotoxicity: a time course study. Toxicol Mech Methods. 25(4):249–257.
  • Tompkins AJ, Burwell LS, Digerness SB, Zaragoza C, Holman WL, Brookes PS. 2006. Mitochondrial dysfunction in cardiac ischemia–reperfusion injury: ROS from complex I, without inhibition. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis. 1762(2):223–231.
  • Torraco A, Carrozzo R, Piemonte F, Pastore A, Tozzi G, Verrigni D, Assenza M, Orecchioni A, D'Egidio A, Marraffa E, et al. 2014. Effects of levosimendan on mitochondrial function in patients with septic shock: a randomized trial. Biochimie. 102:166–173.
  • Tsao C-M, Li K-Y, Chen S-J, Ka S-M, Liaw W-J, Huang H-C, Wu C-C. 2014. Levosimendan attenuates multiple organ injury and improves survival in peritonitis-induced septic shock: studies in a rat model. Crit Care. 18(6):652.
  • Uberti F, Caimmi PP, Molinari C, Mary D, Vacca G, Grossini E. 2011. Levosimendan modulates programmed forms of cell death through KATP channels and nitric oxide. J Cardiovasc Pharmacol. 57(2):246–258.
  • Yamashita S, Suzuki T, Iguchi K, Sakamoto T, Tomita K, Yokoo H, Sakai M, Misawa H, Hattori K, Nagata T, et al. 2018. Cardioprotective and functional effects of levosimendan and milrinone in mice with cecal ligation and puncture-induced sepsis. Naunyn Schmiedebergs Arch Pharmacol. 391(9):1021–1032.
  • Zangrillo A, Biondi-Zoccai G, Mizzi A, Bruno G, Bignami E, Gerli C, De Santis V, Tritapepe L, Landoni G. 2009. Levosimendan reduces cardiac troponin release after cardiac surgery: a meta-analysis of randomized controlled studies. J Cardiothorac Vasc Anesth. 23(4):474–478.
  • Zhao RZ, Jiang S, Zhang L, Yu ZB. 2019. Mitochondrial electron transport chain, ROS generation and uncoupling . Int J Mol Med. 44(1):3–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.