97
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Toxicity effects evaluation of green synthesized silver nanoparticles on intraperitoneally exposed male Wistar rats

, &
Pages 488-500 | Received 14 Jul 2021, Accepted 27 Feb 2022, Published online: 19 Apr 2022

References

  • Aminyavari S, Zahmatkesh M, Farahmandfar M, Khodagholi F, Dargahi L, Zarrindast MR. 2019. Protective role of Apelin-13 on amyloid β25-35-induced memory deficit; involvement of autophagy and apoptosis process. Prog Neuropsychopharmacol Biol Psychiatry. 89:322–334.
  • Aminyavari S, Zahmatkesh M, Khodagholi F, Sanati M. 2019. Anxiolytic impact of Apelin-13 in a rat model of Alzheimer's disease: involvement of glucocorticoid receptor and FKBP5. J Peptides. 118:170102.
  • Antsiferova A, Kopaeva M, Kashkarov P. 2018. Effects of prolonged silver nanoparticle exposure on the contextual cognition and behavior of mammals. J Materials. 11(4):558.
  • Babu Nagati V, Koyyati R, Donda MR, Alwala J, Kundle KR, Padigya PRM. 2012. Green synthesis and characterization of silver nanoparticles from Cajanus cajan leaf extract and its antibacterial activity. Int J Nanomater Biostruct. 23:39–43.
  • Borm PJ, Kreyling W. 2004. Toxicological hazards of inhaled nanoparticles-potential implications for drug delivery. J Nanosci Nanotechnol. 4(5):521–531.
  • Boudreau MD, Imam MS, Paredes AM, Bryant MS, Cunningham CK, Felton RP, Jones MY, Davis KJ, Olson GR. 2016. Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the Sprague Dawley rat following daily oral gavage administration for 13 weeks. J Toxicol Sci. 150(1):131–160.
  • Brunk UT, Terman A. 2002. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. J Free Radical Biol Med. 33(5):611–619.
  • Chahardoli A, Karimi N, Fattahi A. 2017. Biosynthesis, characterization, antimicrobial and cytotoxic effects of silver nanoparticles using Nigella arvensis seed extract. Iran J Pharma Res. 16(3):1167.
  • Chen X, Schluesener H. 2008. Nanosilver: a nanoproduct in medical application. J Toxicol Lett. 176(1):1–12.
  • Chio K, Tappel AL. 1969. Synthesis and characterization of the fluorescent products derived from malonaldehyde and amino acids. Biochemistry. 8(7):2821–2827.
  • Christian P, Von der Kammer F, Baalousha M, Hofmann T. 2008. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology. 17(5):326–343.
  • De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. 2008. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 29(12):1912–1919.
  • De Matteis V, Malvindi MA, Galeone A, Brunetti V, De Luca E, Kote S, Kshirsagar P, Sabella S, Bardi G, Pompa PP. 2015. Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag + ion release in the cytosol. Nanomedicine. 11(3):731–739.
  • Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M. 2010. Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release. 141(3):320–327.
  • Eom HJ, Ahn JM, Kim Y, Choi J. 2013. Hypoxia inducible factor-1 (HIF-1)-flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans. Toxicol Appl Pharmacol. 270(2):106–113.
  • Etame AB, Smith CA, Chan WC, Rutka JT. 2011. Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature. Nanomedicine. 7(6):992–1000.
  • Evans P. 1993. Free radicals in brain metabolism and pathology. Br Med Bull. 49(3):577–587.
  • Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L. 2015. Central nervous system toxicity of metallic nanoparticles. Int J Nanomedicine. 10:4321–4340.
  • Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H. 2009. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. J Toxicol Lett. 190(2):156–162.
  • Gardeli C, Vassiliki P, Athanasios M, Kibouris T, Komaitis M. 2008. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: evaluation of antioxidant capacity of methanolic extracts. J Food Chem. 107(3):1120–1130.
  • Genter MB, Newman NC, Shertzer HG, Ali SF, Bolon B. 2012. Distribution and systemic effects of intranasally administered 25 nm silver nanoparticles in adult mice. Toxicol Pathol. 40(7):1004–1013.
  • Goldstein BD, McDonagh EM. 1976. Spectrofluorescent detection of in vivo red cell lipid peroxidation in patients treated with diaminodiphenylsulfone. J Clin Invest. 57(5):1302–1307.
  • Gómez M, Esparza JL, Cabré M, García T, Domingo JL. 2008. Aluminum exposure through the diet: metal levels in AβPP transgenic mice, a model for Alzheimer's disease. J Toxicol Applied Pharmacol. 249(2–3):214–219.
  • Gour A, Jain NK. 2019. Advances in green synthesis of nanoparticles. J Artif Cells Nanomed Biotechnol. 47(1):844–851.
  • Greish K, Alqahtani AA, Alotaibi AF, Abdulla AM, Bukelly AT, Alsobyani FM, Alharbi GH, Alkiyumi IS, Aldawish MM, Alshahrani TF, et al. 2019. The effect of silver nanoparticles on learning, memory and social interaction in BALB/C mice. IJERPH. 16(1):148.
  • Grune T, Jung T, Merker K, Davies KJ. 2004. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int J Biochem Cell Biol. 36(12):2519–2530.
  • Hajiaghaee R, Faizi M, Shahmohammadi Z, Abdollahnejad F, Naghdibadi H, Najafi F, Razmi A. 2016. Hydroalcoholic extract of Myrtus communis can alter anxiety and sleep parameters: a behavioural and EEG sleep pattern study in mice and rats. Pharm Biol. 54(10):2141–2148.
  • Hoet PH, Brüske-Hohlfeld I, Salata OV. 2004. Nanoparticles–known and unknown health risks. J Nanobiotech. 2(1):1–15.
  • Huang WJ, Zhang X, Chen WW. 2016. Role of oxidative stress in Alzheimer's disease. J Biomed Rep. 4(5):519–522.
  • Hughes RN. 2004. The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neurosci Biobehav Rev. 28(5):497–505.
  • Ivica J, Wilhelm J. 2014. Lipophilic fluorescent products of free radicals. J Biomed Pap Med Fac Palacky Univ Olomouc. 158(3):365–372.
  • Jo DH, Kim JH, Lee TG, Kim JH. 2015. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. J Nanomedicine. 11(7):1603–1611.
  • Jyoti K, Singh A. 2016. Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. J Genet Eng Biotechnol. 14(2):311–317.
  • Karami Mehrian S, De Lima R. 2016. Nanoparticles cyto and genotoxicity in plants: mechanisms and abnormalities. J Environ Nanotechnol Monit Manag. 6:184–193.
  • Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, et al. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine. 3(1):95–101.
  • Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG. 2009. Antifungal activity and mode of action of silver nano-particles on Candida albicans. J Biometals. 22(2):235–242.
  • Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY. 2009. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. J Toxicol In Vitro. 23(6):1076–1084.
  • Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH, et al. 2008. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 20(6):575–583.
  • Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, Chang HK, Lee JH, Oh KH, Kelman BJ. 2010. Subchronic oral toxicity of silver nanoparticles. J Particle Fibre Toxicol. 7(1):1–11.
  • Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. 1995. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). J Brain Res. 674(1):171–174.
  • Kumar V, Yadav SK. 2009. Plant‐mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol. 84(2):151–157.
  • Lankveld DP, Oomen AG, Krystek P, Neigh A, Troost–de Jong A, Noorlander C, Van Eijkeren J, Geertsma R, De, Jong W. 2010. The kinetics of the tissue distribution of silver nanoparticles of different sizes. J Biomaterials. 31(32):8350–8361.
  • Lankveld DP, Rayavarapu RG, Krystek P, Oomen AG, Verharen HW, Van Leeuwen TG, De Jong WH, Manohar S. 2011. Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats. J Nanomed Nanotechnol Biol Med. 6(2):339–349.
  • Lassmann H. 2011. Mechanisms of neurodegeneration shared between multiple sclerosis and Alzheimer’s disease. J Neural Transm. 118(5):747–752.
  • Lee I, Kesner RP. 2003. Time-dependent relationship between the dorsal hippocampus and the prefrontal cortex in spatial memory. J Neurosci. 23(4):1517–1523.
  • Lee JH, Kim YS, Song KS, Ryu HR, Sung JH, Park JD, Park HM, Song NW, Shin BS, Marshak D. 2013. Biopersistence of silver nanoparticles in tissues from Sprague–Dawley rats. J Particle Fibre Toxicol. 10(1):1–14.
  • Lee I, Park S-B. 2013. Perirhinal cortical inactivation impairs object-in-placememory and disrupts task-dependent firing in hippocampal CA1, but not in CA3. Front. Neural Circ. 7:134.
  • Marbouti L, Zahmatkesh M, Riahi E, Sabet MS. 2020. GnRH protective effects against amyloid β-induced cognitive decline: a potential role of the 17β-estradiol. Mol Cell Endocrinol. 518:110985.
  • Moser MB, Moser EI, Forrest E, Andersen P, Morris R. 1995. Spatial learning with a minislab in the dorsal hippocampus. Proc Natl Acad Sci USA. 92(21):9697–9701.
  • Parashar UK, Kumar V, Bera T, Saxena PS, Nath G, Srivastava SK, Giri R, Srivastava A. 2011. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles. Nanotechnology. 22(41):415104.
  • Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K. 2010. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol. 30(2):162–168.
  • Patková J, Vojtíšek M, Tůma J, Vožeh F, Knotková J, Šantorová P, Wilhelm J. 2012. Evaluation of lipofuscin-like pigments as an index of lead-induced oxidative damage in the brain. J Exp Toxicol Pathol. 64(1–2):51–56.
  • Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW. 2011. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. J Toxicol Lett. 201(1):92–100.
  • Sharma HS, Ali SF, Hussain SM, Schlager JJ, Sharma A. 2009. Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J Nanosci Nanotechnol. 9(8):5055–5072.
  • Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC. 2016. The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications. J Artif Cells Nanomed Biotechnol. 44(4):1150–1157.
  • Skoumalová A, Hort J. 2012. Blood markers of oxidative stress in Alzheimer's disease. J Cell Mol Med. 16(10):2291–2300.
  • Song B, Zhang Y, Liu J, Feng X, Zhou T, Shao L. 2016. Is neurotoxicity of metallic nanoparticles the cascades of oxidative stress? J Nanoscale Res Lett. 11(1):1–11.
  • Strużyński W, Dąbrowska‐Bouta B, Grygorowicz T, Ziemińska E, Strużyńska L. 2014. Markers of oxidative stress in hepatopancreas of crayfish (Orconectes limosus, raf) experimentally exposed to nanosilver. J Environ Toxicol. 29(11):1283–1291.
  • Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, et al. 2009. Subchronic inhalation toxicity of silver nanoparticles. J Toxicol Sci. 108(2):452–461.
  • Supraja S, Ali SM, Chakravarthy N, Jaya Prakash Priya A, Sagadevan E, Kasinathan M, Sindhu S, Arumugam P. 2013. Green synthesis of silver nanoparticles from Cynodon dactylon leaf extract. Int J Chem Tech. 5(1):271–277.
  • Tang J, Xiong L, Zhou G, Wang S, Wang J, Liu L, Li J, Yuan F, Lu S, Wan Z, et al. 2010. Silver nanoparticles crossing through and distribution in the blood-brain barrier in vitro. J Nanosci Nanotechnol. 10(10):6313–6317.
  • Tiwari DK, Jin T, Behari J. 2011. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Methods. 21(1):13–24.
  • van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJB, Hollman PCH, et al. 2012. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. J ACS Nano. 6 (8):7427–7442.
  • Vida C, de Toda IM, Cruces J, Garrido A, Gonzalez-Sanchez M, De la Fuente M. 2017. Role of macrophages in age-related oxidative stress and lipofuscin accumulation in mice. Redox Biol. 12:423–437.
  • Wilhelm J, Herget J. 1999. Hypoxia induces free radical damage to rat erythrocytes and spleen: analysis of the fluorescent end-products of lipid peroxidation. Int J Biochem Cell Biol. 31 (6):671–681.
  • Wu T, Rifai N, Roberts LJ, Willett WC, Rimm EB. 2004. Stability of measurements of biomarkers of oxidative stress in blood over 36 hours. J Cancer Epidemiol Prev Biomark. 13(8):1399–1402.
  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE. 2006. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6(8):1794–1807.
  • Yun J-W, Kim S-H, You J-R, Kim WH, Jang J-J, Min S-K, Kim HC, Chung DH, Jeong J, Kang B-C, et al. 2015. Comparative toxicity of silicon dioxide, silver and iron oxide nanoparticles after repeated oral administration to rats. J Appl Toxicol. 35(6):681–693.
  • Zhang G, Li J, Purkayastha S, Tang Y, Zhang H, Yin Y, Li B, Liu G, Cai D. 2013. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature. 497(7448):211–216.
  • Ziemińska E, Stafiej A, Strużyńska L. 2014. The role of the glutamatergic NMDA receptor in nanosilver-evoked neurotoxicity in primary cultures of cerebellar granule cells. J Toxicol Appl Pharmaco. 315:38–48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.