110
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Dispersive liquid-liquid microextraction (DLLME) for determination of tricyclic antidepressants in whole blood and plasma samples and analysis by liquid chromatography with diode array detector (LC-DAD)

, , , , , , & show all
Pages 189-202 | Received 26 Jul 2023, Accepted 05 Oct 2023, Published online: 13 Oct 2023

References

  • Almeida AM, Castel-Branco MM, Falcão AC. 2002. Linear regression for calibration lines revisited: weighting schemes for bioanalytical methods. J Chromatogr B Analyt Technol Biomed Life Sci. 774(2):215–222. doi: 10.1016/s1570-0232(02)00244-1.
  • Alves C, Fernandes C, Dos Santos Neto AJ, Rodrigues JC, Costa Queiroz ME, Lanças FM. 2006. Optimization of the SPME parameters and its online coupling with HPLC for the analysis of tricyclic antidepressants in plasma samples. J Chromatogr Sci. 44(6):340–346. doi: 10.1093/chromsci/44.6.340.
  • Amitai Y, Erickson T, Kennedy EJ, Leikin JB, Hryhorczuk DO, Noble J, Hanashiro PK, Frischer H. 1993. Tricyclic antidepressants in red cells and plasma: correlation with impaired intraventricular conduction in acute overdose. Clin Pharmacol Ther. 54(2):219–227. doi: 10.1038/clpt.1993.133.
  • Armbruster DA, Pry T. 2008. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 29(Suppl 1):S49–S52.
  • Bazregar M, Rajabi M, Yamini Y, Saffarzadeh Z, Asghari A. 2016. Tandem dispersive liquid-liquid microextraction as an efficient method for determination of basic drugs in complicated matrices. J Chromatogr A. 1429:13–21. doi: 10.1016/j.chroma.2015.11.087.
  • Borges EM, Goraieb K, Collins CH. 2012. O Desafio de analisar solutos básicos por cromatografia líquida em modo reverso: algumas alternativas para melhorar as separações. Quím Nova. 35(5):993–1003. doi: 10.1590/S0100-40422012000500024.
  • Carasek E, Bernardi G, Morelli D, Merib J. 2021. Sustainable green solvents for microextraction techniques: recent developments and applications. J Chromatogr A. 1640:461944. doi: 10.1016/j.chroma.2021.461944.
  • Chen X, Zheng S, Le J, Qian Z, Zhang R, Hong Z, Chai Y. 2017. Ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the simultaneous determination of 12 new antidepressants and 2 antipsychotics in whole blood by gas chromatography-mass spectrometry. J Pharm Biomed Anal. 142:19–27. doi: 10.1016/j.jpba.2017.04.032.
  • De Bairros AV, de Almeida RM, Pantaleão L, Barcellos T, e Silva SM, Yonamine M. 2015. Determination of low levels of benzodiazepines and their metabolites in urine by hollow-fiber liquid-phase microextraction (LPME) and gas chromatography-mass spectrometry (GC-MS). J Chromatogr B Analyt Technol Biomed Life Sci. 975:24–33. doi: 10.1016/j.jchromb.2014.10.040.
  • De Boeck M, Dehaen W, Tytgat J, Cuypers E. 2018. Ionic liquid-based liquid-liquid microextraction for benzodiazepine analysis in postmortem blood samples. J Forensic Sci. 63(6):1875–1879. doi: 10.1111/1556-4029.13778.
  • Diaz D, Vallejos A, Torres S, Hernández W, Calvache J, Merchán J, Latorre G, Maldonado L. 2020. Detection of potential risks in the prescription of tricyclic antidepressants through an online clinical alert system. Rev Colomb Psiquiat. 49(1):9–14.
  • Donaldson AE, Lamont IL. 2013. Biochemistry changes that occur after death: potential markers for determining post-mortem interval. PLoS One. 8(11):e82011. doi: 10.1371/journal.pone.0082011.
  • Dos Santos MF, Ferri CC, Seulin SC, Leyton V, Pasqualucci CAG, Muñoz DR, Yonamine M. 2014. Determination of antidepressants in whole blood using hollow-fiber liquid-phase microextraction and gas chromatography–mass spectrometry. Forensic Toxicol. 32(2):214–224. doi: 10.1007/s11419-014-0226-9.
  • Edelbroek PM, Zitman FG, Schreuder JN, Rooymans HG, de Wolff FA. 1984. Amitriptyline metabolism in relation to antidepressive effect. Clin Pharmacol Ther. 35(4):467–473. doi: 10.1038/clpt.1984.61.
  • Fernández P, Regenjo M, Ares A, Fernández AM, Lorenzo RA, Carro AM. 2019. Simultaneous determination of 20 drugs of abuse in oral fluid using ultrasound-assisted dispersive liquid-liquid microextraction. Anal Bioanal Chem. 411(1):193–203. doi: 10.1007/s00216-018-1428-5.
  • Fernández P, Taboada V, Regenjo M, Morales L, Alvarez I, Carro AM, Lorenzo RA. 2016. Optimization of ultrasound assisted dispersive liquid-liquid microextraction of six antidepressants in human plasma using experimental design. J Pharm Biomed Anal. 124:189–197. doi: 10.1016/j.jpba.2016.02.041.
  • Fisichella M, Odoardi S, Strano-Rossi S. 2015. High-throughput dispersive liquid/liquid microextraction (DLLME) method for the rapid determination of drugs of abuse, benzodiazepines and other psychotropic medications in blood samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and application to forensic cases. Microchem J. 123:33–41. doi: 10.1016/j.microc.2015.05.009.
  • Flanagan RJ, Taylor A, Watson ID, Whelpton R. 2007. Sample preparation. In: flanagan RJ, Cuypers E, Maurer HH, Whelpton R, editors. Fundamentals of analytical toxicology. Chichester: Wiley; p. 49–94.
  • Franco de Oliveira S, Zucoloto AD, de Oliveira CDR, Hernandez EMM, Fruchtengarten LVG, de Oliveira TF, Yonamine M. 2019. A fast and simple approach for the quantification of 40 illicit drugs, medicines, and pesticides in blood and urine samples by UHPLC-MS/MS. J Mass Spectrom. 54(7):600–611. doi: 10.1002/jms.4369.
  • Fu S, Lewis J, Wang H, Keegan J, Dawson M. 2010. A novel reductive transformation of oxazepam to nordiazepam observed during enzymatic hydrolysis. J Anal Toxicol. 34(5):243–251. doi: 10.1093/jat/34.5.243.
  • Garland WA. 1977. Quantitative determination of amitriptyline and its principal metabolite, nortriptyline, by GLC-chemical ionization mass spectrometry. J Pharm Sci. 66(1):77–81. doi: 10.1002/jps.2600660119.
  • Ito R, Ushiro M, Takahashi Y, Saito K, Ookubo T, Iwasaki Y, Nakazawa H. 2011. Improvement and validation the method using dispersive liquid-liquid microextraction with in situ derivatization followed by gas chromatography-mass spectrometry for determination of tricyclic antidepressants in human urine samples. J Chromatogr B Analyt Technol Biomed Life Sci. 879(31):3714–3720. doi: 10.1016/j.jchromb.2011.10.012.
  • Karpinska J, Starczewska B. 2002. Simultaneous LC determination of some antidepressants combined with neuroleptics. J Pharm Biomed Anal. 29(3):519–525. doi: 10.1016/s0731-7085(02)00097-3.
  • Liebelt EL, Francis PD. 2002. Chapter 57 – Cyclic antidepressants. In: Goldfrank LR, Flomenbaum NR, Lewin NA, Howland MA, Hoffman RS, Nelson LS, editors. Goldfrank’s toxicological emergencies, 7th ed. USA: McGraw-Hill; p. 847–864.
  • Lundstrøm NH, Holgersen NK, Haastrup MB. 2022. The effect of smoking on the plasma concentration of tricyclic antidepressants: a systematic review. Acta Neuropsychiatr. 34(1):1–9. doi: 10.1017/neu.2021.28.
  • Malfará WR, Bertucci C, Costa Queiroz ME, Dreossi Carvalho SA, Pires Bianchi MdL, Cesarino EJ, Crippa JA, Costa Queiroz RH. 2007. Reliable HPLC method for therapeutic drug monitoring of frequently prescribed tricyclic and nontricyclic antidepressants. J Pharm Biomed Anal. 44(4):955–962. doi: 10.1016/j.jpba.2007.04.005.
  • Manousi N, Samanidou VF. 2020. Recent advances in the HPLC analysis of tricyclic antidepressants in bio-samples. Mini Rev Med Chem. 20(1):24–38. doi: 10.2174/1389557519666190617150518.
  • Martins ML, Primel EG, Caldas SS, Prestes OD, Adaime MB, Zanella R. 2012. Microextração Líquido-Líquido Dispersiva (DLLME): fundamentos e aplicações. SC. 4(1):29–45. doi: 10.4322/sc.2012.004.
  • Meatherall R. 1994. Optimal enzymatic hydrolysis of urinary benzodiazepine conjugates. J Anal Toxicol. 18(7):382–384. doi: 10.1093/jat/18.7.382.
  • Mercolini L, Mandrioli R, Finizio G, Boncompagni G, Raggi MA. 2010. Simultaneous HPLC determination of 14 tricyclic antidepressants and metabolites in human plasma. J Sep Sci. 33(1):23–30. doi: 10.1002/jssc.200900493.
  • Mohebbi A, Farajzadeh MA, Nemati M, Sarhangi N, A, Mogaddam MR. 2019. Development of green sodium sulfate-induced solidification of floating organic droplets-dispersive liquid phase microextraction method: application to extraction of four antidepressants. Biomed Chromatogr. 33(11):e4642.
  • Mohebbi A, Farajzadeh MA, Yaripour S, Afshar Mogaddam MR. 2018. Determination of tricyclic antidepressants in human urine samples by the three-step sample pretreatment followed by HPLC-UV analysis: an efficient analytical method for further pharmacokinetic and forensic studies. Excli J. 17:952–963.
  • Mohebbi A, Yaripour S, Farajzadeh MA, Afshar Mogaddam MR. 2018b. Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic antidepressant drugs in biological fluids. J Chromatogr A. 1571:84–93. doi: 10.1016/j.chroma.2018.08.022.
  • Montenarh D, Hopf M, Maurer HH, Schmidt P, Ewald AH. 2014. Detection and quantification of benzodiazepines and Z-drugs in human whole blood, plasma, and serum samples as part of a comprehensive multi-analyte LC-MS/MS approach. Anal Bioanal Chem. 406(3):803–818. doi: 10.1007/s00216-013-7513-x.
  • Nabil AA, Nouri N, Farajzadeh MA. 2015. Determination of three antidepressants in urine using simultaneous derivatization and temperature-assisted dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection. Biomed Chromatogr. 29(7):1094–1102. doi: 10.1002/bmc.3396.
  • Pelição FA, De Martinis BS, Pissinate JF. 2018. Capítulo 20 – Amostras Biológicas em Análises Forenses: matrizes Usuais (Urina e Sangue). In: Dorta DJ, Yonamine M, Costa JL, Martinis BS, editors. Toxicologia Forense. São Paulo: Blucher; p. 381–392.
  • Perry PJ, Zeilmann C, Arndt S. 1994. Tricyclic antidepressant concentrations in plasma: an estimate of their sensitivity and specificity as a predictor of response. J Clin Psychopharmacol. 14(4):230–240.
  • Queiroz RH, Lanchote VL, Bonato PS, de Carvalho D. 1995. Simultaneous HPLC analysis of tricyclic antidepressants and metabolites in plasma samples. Pharm Acta Helv. 70(2):181–186. doi: 10.1016/0031-6865(95)00019-6.
  • Saldanha GA, Pacheco ALB, Pego AMF, Bairros AV. 2022. Analysis of benzodiazepines in plasma samples by DLLME and LC-DAD: critical aspects, flaws and issues encountered – a discussion. Quim Nova. 45:1–8.
  • Samanidou VF, Nika MK, Papadoyannis IN. 2007. Development of an HPLC method for the monitoring of tricyclic antidepressants in biofluids. J Sep Sci. 30(15):2391–2400. doi: 10.1002/jssc.200700142.
  • Santos MG, Tavares IM, Barbosa AF, Bettini J, Figueiredo EC. 2017. Analysis of tricyclic antidepressants in human plasma using online-restricted access molecularly imprinted solid phase extraction followed by direct mass spectrometry identification/quantification. Talanta. 163:8–16. doi: 10.1016/j.talanta.2016.10.047.
  • Seidi S, Yamini Y, Rezazadeh M. 2013. Combination of electromembrane extraction with dispersive liquid-liquid microextraction followed by gas chromatographic analysis as a fast and sensitive technique for determination of tricyclic antidepressants. J Chromatogr B Analyt Technol Biomed Life Sci. 913-914:138–146. doi: 10.1016/j.jchromb.2012.12.008.
  • Shamsipur M, Mirmohammadi M. 2014. High performance liquid chromatographic determination of ultra traces of two tricyclic antidepressant drugs imipramine and trimipramine in urine samples after their dispersive liquid-liquid microextraction coupled with response surface optimization. J Pharm Biomed Anal. 100:271–278. doi: 10.1016/j.jpba.2014.08.008.
  • Silveira GO, Lourenço FR, Fonseca Pego AM, Guimarães Dos Santos R, Rossi GN, Hallak JEC, Yonamine M. 2021. Essential oil-based dispersive liquid-liquid microextraction for the determination of N,N-dimethyltryptamine and β-carbolines in human plasma: a novel solvent-free alternative. Talanta. 225:121976. doi: 10.1016/j.talanta.2020.121976.
  • SINITOX (Sistema Nacional de Informações Tóxico-Farmacológicas). 2020. Evolution of registered cases of human poisoning by toxic agent (in Portuguese). [accessed 2023 July 10] Available from: https://sinitox.icict.fiocruz.br/sites/sinitox.icict.fiocruz.br/files//Brasil3_1.pdf.
  • Skopp G. 2004. Preanalytic aspects in postmortem toxicology. Forensic Sci Int. 142(2-3):75–100. doi: 10.1016/j.forsciint.2004.02.012.
  • SWGTOX (Scientific Working Group for Forensic Toxicology). 2013. Scientific Working Group for Forensic Toxicology (SWGTOX) standard practices for method validation in forensic toxicology. J Anal Toxicol. 37:452–474.
  • Tabani H, Shokri A, Tizro S, Nojavan S, Varanusupakul P, Alexovič M. 2019. Evaluation of dispersive liquid-liquid microextraction by coupling with green-based agarose gel-electromembrane extraction: an efficient method to the tandem extraction of basic drugs from biological fluids. Talanta. 199:329–335. doi: 10.1016/j.talanta.2019.02.078.
  • Theurillat R, Thormann W. 1998. Monitoring of tricyclic antidepressants in human serum and plasma by HPLC: characterization of a simple, laboratory developed method via external quality assessment. J Pharm Biomed Anal. 18(4-5):751–760. doi: 10.1016/s0731-7085(98)00263-5.
  • Titier K, Castaing N, Le-Déodic M, Le-Bars D, Moore N, Molimard M. 2007. Quantification of tricyclic antidepressants and monoamine oxidase inhibitors by high-performance liquid chromatography-tandem mass spectrometry in whole blood. J Anal Toxicol. 31(4):200–207. doi: 10.1093/jat/31.4.200.
  • Tomai P, Gentili A, Curini R, Gottardo R, Franco Tagliaro, Fanali S. 2021. Dispersive liquid-liquid microextraction, an effective tool for the determination of synthetic cannabinoids in oral fluid by liquid chromatography-tandem mass spectrometry. J Pharm Anal. 11(3):292–298. doi: 10.1016/j.jpha.2020.11.004.
  • Uddin MN, Samanidou VF, Papadoyannis IN. 2008. Development and validation of an HPLC method for the determination of benzodiazepines and tricyclic antidepressants in biological fluids after sequential SPE. J Sep Sci. 31(13):2358–2370. doi: 10.1002/jssc.200800079.
  • UNODC (United Nations Office on Drugs and Crime). 2009. Guidance for de validation of analytical methodology and calibration of equipment used for testing of illicit drugs in seized materials and biological specimens. [accessed 2020 December 20] Available from: https://www.unodc.org/documents/scientific/validation_E.pdf.
  • Vaghar-Lahijani G, Saber-Tehrani M, Aberoomand-Azar P, Soleimani M. 2018. Extraction and determination of two antidepressant drugs in human plasma by dispersive liquid–liquid microextraction–HPLC. J Anal Chem. 73(2):145–151. doi: 10.1134/S1061934818020144.
  • Vander Heyden Y, Nijhuis A, Smeyers-Verbeke J, Vandeginste BG, Massart DL. 2001. Guidance for robustness/ruggedness tests in method validation. J Pharm Biomed Anal. 24(5-6):723–753. doi: 10.1016/s0731-7085(00)00529-x.
  • Xiong C, Ruan J, Cai Y, Tang Y. 2009. Extraction and determination of some psychotropic drugs in urine samples using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography. J Pharm Biomed Anal. 49(2):572–578. doi: 10.1016/j.jpba.2008.11.036.
  • Yazdi AS, Razavi N, Yazdinejad SR. 2008. Separation and determination of amitriptyline and nortriptyline by dispersive liquid-liquid microextraction combined with gas chromatography flame ionization detection. Talanta. 75(5):1293–1299. doi: 10.1016/j.talanta.2008.01.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.