34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In-silico green toxicology approach toward discovering safer ligands for development of safe-by-design metal–organic frameworks

, , , &
Received 07 Jan 2024, Accepted 23 Apr 2024, Published online: 23 May 2024

References

  • Animaw Z, Asres K, Abebe A, Taye S, Seyoum G. 2023. Acute and developmental toxicity of embelin isolated from Embelia schimperi Vatke fruit: in vivo and in silico studies. Toxicol Rep. 10:714–722. doi: 10.1016/j.toxrep.2023.06.006.
  • Arul P, Huang ST, Gowthaman NSK, Govindasamy M, Jeromiyas N. 2020. Surfactant-free solvothermal synthesis of Cu-MOF via protonation-deprotonation approach: a morphological dependent electrocatalytic activity for therapeutic drugs. Microchim Acta. 187(12):650. doi: 10.1007/s00604-020-04631-x.
  • Arulanandam CD, JS, Hwang, AJ, Rathinam, HU, Dahms. 2022. Evaluating different web applications to assess the toxicity of plasticizers. Sci Rep. 12(1):19684. doi: 10.1038/s41598-022-18327-0.
  • Ban Y, Li Y, Liu X, Peng Y, Yang W. 2013. Solvothermal synthesis of mixed-ligand metal–organic framework ZIF-78 with controllable size and morphology. Microporous Mesoporous Mater. 173:29–36. https://www.sciencedirect.com/science/article/pii/S1387181113000619. doi: 10.1016/j.micromeso.2013.01.031.
  • Banerjee P, Eckert AO, Schrey AK, Preissner R. 2018. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 46(W1):W257–w263. doi: 10.1093/nar/gky318.
  • Banerjee P, Ulker OC. 2022. Combinative ex vivo studies and in silico models ProTox-II for investigating the toxicity of chemicals used mainly in cosmetic products. Toxicol Mech Method. 32(7):542–548. doi: 10.1080/15376516.2022.2053623.
  • Basu N, Crump D, Head J, Hickey G, Hogan N, Maguire S, Xia J, Hecker M. 2019. EcoToxChip: a next-generation toxicogenomics tool for chemical prioritization and environmental management. Environ Toxic Chem. 38(2):279–288. https://setac.onlinelibrary.wiley.com/doi/abs/10.1002/etc.4309. doi: 10.1002/etc.4309.
  • Berens S, F, Hillman Mohamad RA, Hamid HK, Jeong, S, Vasenkov. 2021. Influence of 2-ethylimidazole linker-doping in ZIF-8 crystals on intracrystalline self-diffusion of gas molecules by high field diffusion NMR. Microporous Mesoporous Mater. 315:110897. doi: 10.1016/j.micromeso.2021.110897.
  • Biradha K, Sarkar M, Rajput L. 2006. Crystal engineering of coordination polymers using 4,4′-bipyridine as a bond between transition metal atoms. Chem Commun (Camb). (40):4169–4179. doi: 10.1039/B606184B.
  • Black HS, Castrow FF, Gerguis J. 1985. The mutagenicity of dinitrochlorobenzene. Arch Dermatol. 121(3):348–349. doi: 10.1001/archderm.1985.01660030070021.
  • Butova VV, Vladimir A, Polyakov EA, Bulanova MA, Soldatov IS, Yahia Heba Y, Zahran AF, Abd El-Rehim H, Algarni AM, Aboraia AV, et al. 2020. MW synthesis of ZIF-65 with a hierarchical porous structure. Microporous Mesoporous Mater. 293:109685. https://www.sciencedirect.com/science/article/pii/S1387181119305426. doi: 10.1016/j.micromeso.2019.109685.
  • Chen B, Eddaoudi M, Reineke TM, Kampf JW, O’Keeffe M, Yaghi OM. 2000. Cu2 (ATC)⊙ 6H2O: design of open metal sites in porous metal–organic crystals (ATC: 1, 3, 5, 7-adamantane tetracarboxylate). J Am Chem Soc. 122(46):11559–11560. doi: 10.1021/ja003159k.
  • Chen S, Xiao S, Liu J, Li Z. 2018. Synthesis and hydrogen storage properties of zirconium metal-organic frameworks UIO-66(H2ADC) with 9,10-anthracenedicarboxylic acid as ligand. J Porous Mater. 25(6):1783–1788. doi: 10.1007/s10934-018-0591-6.
  • Crawford SE, Hartung T, Hollert H, Mathes B, van Ravenzwaay B, Steger-Hartmann T, Studer C, Krug HF. 2017. Green Toxicology: a strategy for sustainable chemical and material development. Environ Sci Eur. 29(1):16. doi: 10.1186/s12302-017-0115-z.
  • DeLeve LD. 1996. Dinitrochlorobenzene is genotoxic by sister chromatid exchange in human skin fibroblasts. Mutat Res/Genetic Toxicol. 371(1–2):105–108. doi: 10.1016/S0165-1218(96)90099-3.
  • Dreischarf AC, Lammert M, Stock N, Reinsch H. 2017. Green synthesis of Zr-CAU-28: structure and properties of the first Zr-MOF based on 2,5-furandicarboxylic acid. Inorg Chem. 56(4):2270–2277. doi: 10.1021/acs.inorgchem.6b02969.
  • Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R. 2014. ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res. 42(W1):W53–W58. doi: 10.1093/nar/gku401.
  • Ettlinger R, Lächelt U, Gref R, Horcajada P, Lammers T, Serre C, Couvreur P, Morris RE, Wuttke S. 2022. Toxicity of metal–organic framework nanoparticles: from essential analyses to potential applications. Chem Soc Rev. 51(2):464–484. doi: 10.1039/d1cs00918d.
  • Fan Z, Wang J, Wang W, Burger S, Wang Z, Wang Y, Wöll C, Cokoja M, Fischer RA. 2020. Defect engineering of copper paddlewheel-based metal–organic frameworks of type NOTT-100: implementing truncated linkers and its effect on catalytic properties. ACS Appl Mater Interfaces. 12(34):37993–38002. doi: 10.1021/acsami.0c07249.
  • Furukawa H, Go YB, Ko N, Park YK, Uribe-Romo FJ, Kim J, O’Keeffe M, Yaghi OM. 2011. Isoreticular expansion of metal–organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. Inorg Chem. 50(18):9147–9152. doi: 10.1021/ic201376t.
  • Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AO, Snurr RQ, O’Keeffe M, Kim J, et al. 2010. Ultrahigh porosity in metal-organic frameworks. Science. 329(5990):424–428. doi: 10.1126/science.1192160.
  • Furukawa H, Miller MA, Yaghi OM. 2007. Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks. J Mater Chem. 17(30):3197–3204. doi: 10.1039/b703608f.
  • Hou P, Jolliet O, Zhu J, Xu M. 2020. Estimate ecotoxicity characterization factors for chemicals in life cycle assessment using machine learning models. Environ Int. 135:105393. https://www.sciencedirect.com/science/article/pii/S0160412019314412. doi: 10.1016/j.envint.2019.105393.
  • Hu X, Lou X, Li C, Ning Y, Liao Y, Chen Q, Mananga ES, Shen M, Hu B. 2016. Facile synthesis of the Basolite F300-like nanoscale Fe-BTC framework and its lithium storage properties. RSC Adv. 6(115):114483–114490. doi: 10.1039/C6RA22738D.
  • Hungerford J, Walton KS. 2019. Room-temperature synthesis of metal–organic framework isomers in the tetragonal and kagome crystal structure. Inorg Chem. 58(12):7690–7697. doi: 10.1021/acs.inorgchem.8b03202.
  • Ji H, Lee S, Park J, Kim T, Choi S, Oh M. 2018. Improvement in crystallinity and porosity of poorly crystalline metal–organic frameworks (MOFs) through their induced growth on a well-crystalline MOF template. Inorg Chem. 57(15):9048–9054. doi: 10.1021/acs.inorgchem.8b01055.
  • Jiang H, Jia J, Shkurenko A, Chen Z, Adil K, Belmabkhout Y, Weselinski LJ, Assen AH, Xue D-X, O’Keeffe M, et al. 2018. Enriching the reticular chemistry repertoire: merged nets approach for the rational design of intricate mixed-linker metal–organic framework platforms. J Am Chem Soc. 140(28):8858–8867. doi: 10.1021/jacs.8b04745.
  • Julien PA, Mottillo C, Friščić T. 2017. Metal–organic frameworks meet scalable and sustainable synthesis. Green Chem. 19(12):2729–2747. doi: 10.1039/C7GC01078H.
  • Katz MJ, Brown ZJ, Colón YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK. 2013. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem Commun. 49(82):9449–9451. doi: 10.1039/c3cc46105j.
  • Kayal S, Chakraborty A, Teo HWB. 2018. Green synthesis and characterization of aluminium fumarate metal-organic framework for heat transformation applications. Mater Lett. 221:165–167. https://www.sciencedirect.com/science/article/pii/S0167577X18304634. doi: 10.1016/j.matlet.2018.03.099.
  • Kim DO, Park J, Ahn GR, Jeon HJ, Kim JS, Kim DW, Jung MS, Lee SW, Shin SH. 2011. Synthesis of MOF having functional side group. Inorg Chim Acta. 370(1):76–81. https://www.sciencedirect.com/science/article/pii/S0020169311000375. doi: 10.1016/j.ica.2011.01.030.
  • Kim J, Chen B, Reineke TM, Li H, Eddaoudi M, Moler DB, O’Keeffe M, Yaghi OM. 2001. Assembly of metal − organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures. J Am Chem Soc. 123(34):8239–8247. doi: 10.1021/ja010825o.
  • Kurzydym I, Czekaj I. 2020. Modelling of porous metal-organic framework (MOF) materials used in catalysis. Techn Trans. 117(1). https://doi.org/10.37705/TechTrans/e2020012.
  • Lammert M, Reinsch H, Murray CA, Wharmby MT, Terraschke H, Stock N. 2016. Synthesis and structure of Zr(iv)- and Ce(iv)-based CAU-24 with 1,2,4,5-tetrakis(4-carboxyphenyl)benzene. Dalton Trans. 45(47):18822–18826. doi: 10.1039/C6DT03852B.
  • Lee SJ, Doussot C, Baux A, Liu L, Jameson GB, Richardson C, Pak JJ, Trousselet F, Coudert F-X, Telfer SG. 2016. Multicomponent metal–organic frameworks as defect-tolerant materials. Chem Mater. 28(1):368–375. doi: 10.1021/acs.chemmater.5b04306.
  • Lee YR, Jang MS, Cho HY, Kwon HJ, Kim S, Ahn WS. 2015. ZIF-8: a comparison of synthesis methods. Chem Eng J. 271:276–280. https://www.sciencedirect.com/science/article/pii/S1385894715003034. doi: 10.1016/j.cej.2015.02.094.
  • Li Y, Gao F, Xue J, Yang GP, Wang YY. 2023. Selective visible-light photocatalytic oxidation of sulfides and catalytic CO2 fixation by two-interpenetrated photoresponsive MOF-150. Crystal Growth Design. 23(5):3702–3710. doi: 10.1021/acs.cgd.3c00120.
  • Liu CH, Chiu HC, Sung HL, Yeh Kevin JY, Wu, CW, Liu SH. 2019. Acute oral toxicity and repeated dose 28-day oral toxicity studies of MIL-101 nanoparticles. Regul Toxicol Pharmacol. 107:104426. https://www.sciencedirect.com/science/article/pii/S0273230019301904. doi: 10.1016/j.yrtph.2019.104426.
  • Liu CS, Sun CX, Tian JY, Wang ZW, Ji HF, Song YP, Zhang S, Zhang ZH, He LH, Du M. 2017. Highly stable aluminum-based metal-organic frameworks as biosensing platforms for assessment of food safety. Biosens Bioelectron. 91:804–810. https://www.sciencedirect.com/science/article/pii/S095656631730060X. doi: 10.1016/j.bios.2017.01.059.
  • Lü L, Mu B, Li CX, Huang RD. 2016. Systematic design and research on a series of cadmium coordination polymers assembled due to tetracarboxylate ligands. J Solid State Chem. 234:93–102. https://www.sciencedirect.com/science/article/pii/S0022459615302723. doi: 10.1016/j.jssc.2015.12.005.
  • Lucena MAM, Oliveira MFL, Arouca AM, Talhavini M, Ferreira EA, Alves S, Jr., Veiga-Souza FH, Weber IT. 2017. Application of the metal–organic framework [Eu(BTC)] as a luminescent marker for gunshot residues: a synthesis, characterization, and toxicity study. ACS Appl Mater Interfaces. 9(5):4684–4691. doi: 10.1021/acsami.6b13474.
  • Maksimchuk NV, Zalomaeva OV, Skobelev IY, Kovalenko KA, Fedin VP, Kholdeeva OA. 2012. Metal–organic frameworks of the MIL-101 family as heterogeneous single-site catalysts. Proceedings of the Royal Society A: mathematical, physical and engineering sciences 468 (2143):2017–2034. doi: 10.1098/rspa.2012.0072.https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2012.0072.
  • Murinzi TW, Hosten E, Watkins GM. 2017. Synthesis and characterization of a cobalt-2,6-pyridinedicarboxylate MOF with potential application in electrochemical sensing. Polyhedron. 137:188–196. https://www.sciencedirect.com/science/article/pii/S0277538717305612. doi: 10.1016/j.poly.2017.08.030.
  • Myatt GJ, Ernst A, Yumi A, David A, Alexander A, Anger LT, Aynur A, Scott A, Lisa B, Phillip B, et al. 2018. In silico toxicology protocols. Regul Toxicol Pharm. 96:1–17. https://www.sciencedirect.com/science/article/pii/S0273230018301144. doi: 10.1016/j.yrtph.2018.04.014.
  • Nguyen KD, NT, Vo KTM, Le KV, Ho Nam TS, Phan PH, Ho, HV, Le. 2023. Defect-engineered metal–organic frameworks (MOF-808) towards the improved adsorptive removal of organic dyes and chromium (vi) species from water. New J Chem. 47(13):6433–6447. doi: 10.1039/D2NJ05693C.
  • Niknam Shahrak M, Ghahramaninezhad M, Eydifarash M. 2017. Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr (VI) ions from aqueous solution. Environ Sci Pollut Res Int. 24(10):9624–9634. doi: 10.1007/s11356-017-8577-5.
  • Noga M, Michalska A, Jurowski K. 2024. The prediction of acute toxicity (LD50) for organophosphorus-based chemical warfare agents (V-series) using toxicology in silico methods. Arch Toxicol. 98(1):267–275. doi: 10.1007/s00204-023-03632-y.
  • Parsaei M, Akhbari K, Tylianakis E, Froudakis GE, White JM, Kawata S. 2022. Computational study of two three-dimensional co(II)-based metal–organic frameworks as quercetin anticancer drug carriers. Crystal Growth Design. 22(12):7221–7233. doi: 10.1021/acs.cgd.2c00900.
  • Piromchom J, Boonmak J, Chainok K, Youngme S. 2015. Water-induced dynamic crystal-to-amorphous transformation of cobalt(II) coordination and supramolecular frameworks containing benzene-1,2,4,5-tetracarboxylic acid and trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene ligands. Polyhedron. 102:593–599. https://www.sciencedirect.com/science/article/pii/S0277538715006701. doi: 10.1016/j.poly.2015.11.012.
  • Qi D, Si X, Guo L, Yan Z, Shao C, Yang L. 2022. Metal-organic framework of Zn(II) based on 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine as a highly effective and dual-responsive fluorescent chemosensor target for Fe3+ and Cr2O72− ions in aqueous solutions. Colloid Surf A Physicochem Eng Aspect. 649:129477. https://www.sciencedirect.com/science/article/pii/S0927775722012328. doi: 10.1016/j.colsurfa.2022.129477.
  • Raies AB, Bajic VB. 2016. In silico toxicology: computational methods for the prediction of chemical toxicity. WIREs Comput Mol Sci. 6(2):147–172. https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1240. doi: 10.1002/wcms.1240.
  • Rocío-Bautista P, Termopoli V. 2019. Metal–organic frameworks in solid-phase extraction procedures for environmental and food analyses. Chromatographia. 82(8):1191–1205. doi: 10.1007/s10337-019-03706-z.
  • Rowsell Jesse LC, Yaghi OM. 2006. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal − organic frameworks. J Am Chem Soc. 128(4):1304–1315. doi: 10.1021/ja056639q.
  • Ru J, Wang X, Wang F, Cui X, Du X, Lu X. 2021. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: synthesis, applications and adsorption mechanism. Ecotoxicol Environ Saf. 208:111577. https://www.sciencedirect.com/science/article/pii/S0147651320314147. doi: 10.1016/j.ecoenv.2020.111577.
  • Sabzevar AM, M, Ghahramaninezhad, MN, Shahrak. 2021. Enhanced biodiesel production from oleic acid using TiO2-decorated magnetic ZIF-8 nanocomposite catalyst and its utilization for used frying oil conversion to valuable product. Fuel. 288:119586. doi: 10.1016/j.fuel.2020.119586.
  • Schmidt U, Struck S, Gruening B, Hossbach J, Jaeger IS, Parol R, Lindequist U, Teuscher E, Preissner R. 2009. SuperToxic: a comprehensive database of toxic compounds. Nucleic Acids Res. 37:D295–D299. doi: 10.1093/nar/gkn850.
  • Shieh F, Wang S, Leo S, Wu KC. 2013. Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size. Chem A Eur J. 19(34):11139–11142. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.201301560. doi: 10.1002/chem.201301560.
  • Sivam T, Gowthaman NSK, Lim HN, Andou Y, Arul P, Narayanamoorthi E, John SA. 2021. Tunable electrochemical behavior of dicarboxylic acids anchored Co-MOF: sensitive determination of rutin in pharmaceutical samples. Colloid Surf A Physicochem Eng Aspect. 622:126667. https://www.sciencedirect.com/science/article/pii/S0927775721005367. doi: 10.1016/j.colsurfa.2021.126667.
  • Tschense CBL, Reimer N, Hsu C-W, Reinsch H, Siegel R, Chen WJ, Lin CH, Cadiau A, Serre C, Senker J, et al. 2017. New group 13 MIL-53 derivates based on 2,5-thiophenedicarboxylic acid. Zeitschrif Anorg Allge Chem. 643(21):1600–1608. https://onlinelibrary.wiley.com/doi/abs/10.1002/zaac.201700260. doi: 10.1002/zaac.201700260.
  • Villarroel-Rocha D, Bernini MC, Arroyo-Gómez JJ, Villarroel-Rocha J, Sapag K. 2022. Synthesis of MOF-5 using terephthalic acid as a ligand obtained from polyethylene terephthalate (PET) waste and its test in CO2 adsorption. Braz J Chem Eng. 39(4):949–959. doi: 10.1007/s43153-021-00192-5.
  • Wang B, Côté AP, Furukawa H, O’Keeffe M, Yaghi OM. 2008. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature. 453(7192):207–211. doi: 10.1038/nature06900.
  • Wang G, Liu Y, Huang B, Qin X, Zhang X, Dai Y. 2015. A novel metal–organic framework based on bismuth and trimesic acid: synthesis, structure and properties. Dalton Trans. 44(37):16238–16241. doi: 10.1039/c5dt03111g.
  • Wang S, Serre C. 2019. Toward green production of water-stable metal–organic frameworks based on high-valence metals with low toxicities. ACS Sustain Chem Eng. 7(14):11911–11927.
  • Wang XY, Wang ZM, Gao S. 2008. Detailed magnetic studies on Co(N3)2(4-acetylpyridine)2: a weak-ferromagnet with a very big canting angle. Inorg Chem. 47(13):5720–5726. doi: 10.1021/ic7023549.
  • Wang X, Xu Z, Li L, Zhao Y, Su R, Liang G, Yang B, Miao Y, Meng W, Luan Z, et al. 2020. NO2 removal under ambient conditions by nanoporous multivariate zirconium-based metal–organic framework. ACS Appl Nano Mater. 3(11):11442–11454. doi: 10.1021/acsanm.0c02533.
  • Wang Y, Cao H, Zheng B, Zhou R, Duan J. 2018. Solvent- and pH-dependent formation of four zinc porous coordination polymers: framework isomerism and gas separation. Crystal Growth Design. 18(12):7674–7682. doi: 10.1021/acs.cgd.8b01433.
  • Xia W, Zhu J, Guo W, An L, Xia D, Zou R. 2014. Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction. J Mater Chem A. 2(30):11606–11613. doi: 10.1039/C4TA01656D.
  • Xu H, Dong Y, Wu Y, Ren W, Zhao T, Wang S, Gao J. 2018. An -OH group functionalized MOF for ratiometric Fe3+ sensing. J Solid State Chem. 258:441–446. https://www.sciencedirect.com/science/article/pii/S0022459617304590. doi: 10.1016/j.jssc.2017.11.013.
  • Yang Y, Huang J, Zou Y, Li Y, Zhan T, Huang L, Ma X, Zhang Z, Xiang S. 2023. Zhangjing Zhang, and Shengchang Xiang. 2023. "N, O-coordinated Zn-MOFs for selective conversion of CO2 to formate. Appl Surf Sci. 618:156664. https://www.sciencedirect.com/science/article/pii/S0169433223003409. doi: 10.1016/j.apsusc.2023.156664.
  • Yang Y, Lin R, Ge L, Hou L, Bernhardt P, Rufford TE, Wang S, Rudolph V, Wang Y, Zhu Z. 2015. Synthesis and characterization of three amino-functionalized metal–organic frameworks based on the 2-aminoterephthalic ligand. Dalton Trans. 44(17):8190–8197. doi: 10.1039/C4DT03927K.
  • Yao Q, Bermejo Gómez A, Su J, Pascanu V, Yun Y, Zheng H, Chen H, Liu L, Abdelhamid HN, Martín-Matute B, et al. 2015. Series of highly stable isoreticular lanthanide metal–organic frameworks with expanding pore size and tunable luminescent properties. Chem Mater. 27(15):5332–5339. doi: 10.1021/acs.chemmater.5b01711.
  • Zhang J, Cui Y, Qian G. 2018. Rational designed metal-organic frameworks for storage and separation of hydrogen and methane. COC. 22(18):1792–1808. doi: 10.2174/1385272822666180913112820.
  • Zhang L, McHale CM, Greene N, Snyder RD, Rich IN, Aardema MJ, Roy S, Pfuhler S, Venkatactahalam S. 2014. Emerging approaches in predictive toxicology. Environ Mol Mutagen. 55(9):679–688. doi: 10.1002/em.21885.
  • Zhu C, Gerald RE, II, Chen Y, Huang J. 2020. Metal-organic framework portable chemical sensor. Sens Actuat B Chem. 321:128608. https://www.sciencedirect.com/science/article/pii/S0925400520309540. doi: 10.1016/j.snb.2020.128608.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.