3
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Temporal and Dosage Impact of Magnesium Oxide Nanoparticles on Grass Carp: Unveiling Oxidative Stress, DNA Damage and Antioxidant Suppression

, , , , , , , , & show all
Received 18 May 2024, Accepted 16 Jul 2024, Accepted author version posted online: 21 Jul 2024
Accepted author version

References

  • Akram, R., Ghaffar, A., Hussain, R., Khan, I., de Assis Santana, V. L., Mehmood, K., Naz, S., Iqbal, R., Imran, H. M., and Qamar, M. R. (2022). Hematological, serum biochemistry, histopathological and mutagenic impacts of triclosan on fish (bighead carp). Agrobiological records, 7:18-28.
  • Ali, A., Saeed, S., Hussain, R., Afzal, G., Siddique, A. B., Parveen, G., Hasan, M., and Caprioli, G. (2023). Synthesis and characterization of silica, silver-silica, and zinc oxide-silica nanoparticles for evaluation of blood biochemistry, oxidative stress, and hepatotoxicity in albino rats. ACS omega, 8(23): 20900-20911.
  • Ali, A., Saeed, S., Hussain, R., Saif, M. S., Waqas, M., Asghar, I., Xue, X., and Hasan, M. (2024). Exploring the impact of silica and silica-based nanoparticles on serological parameters, histopathology, organ toxicity, and genotoxicity in Rattus norvegicus. Applied Surface Science Advances, 19:100551.
  • Aliko, V., Vasjari, L., Ibrahimi, E., Impellitteri, F., Karaj, A., Gjonaj, G., Piccione, G., Arfuso, F., Faggio, C., and Istifli, E. S. (2024). “From shadows to shores”-quantitative analysis of CuO nanoparticle-induced apoptosis and DNA damage in fish erythrocytes: A multimodal approach combining experimental, image-based quantification, docking and molecular dynamics. Science of The Total Environment, 906:167698.
  • Almontasser, A., Parveen, A., and Azam, A. (2019). Synthesis, Characterization and antibacterial activity of Magnesium Oxide (MgO) nanoparticles. In IOP Conference Series: Materials Science and Engineering. 577(1): 012051.
  • ALRashdi, B. M., Germoush, M. O., Sani, S. S., Ayub, I., Bashir, W., Hussain, B., Mazhar, M., Ali, S., Zahid, Z., and Ayesha, S. (2023). Biosynthesis of Salvia hispanica Based Silver Nanoparticles and Evaluation of their Antibacterial Activity in-vitro and Rat Model. Pakistan Veterinary Journal, 43(2):283-289.
  • Alshammari, G. M., Al-Ayed, M. S., Abdelhalim, M. A., Al-Harbi, L. N., and Yahya, M. A. (2023). Effects of antioxidant combinations on the renal toxicity induced rats by gold nanoparticles. Molecules, 28(4):1879.
  • Anjum, R., Hamid, M., Khalil, R., and Ajmal, A. (2023). International Journal of Agriculture and Biosciences. 12(3):193-198.
  • Arslanbaş, E., and COŞAR, Z. (2019). Toxic effects of cutaneous and oral exposure to aluminum and magnesium nanoparticles on brain tissue in rats. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 67(1):41-50.
  • Aslam, N., Ali, A., Sial, B., Maqsood, R., Mahmood, Y., Mustafa, G., and Sana, A. (2023). Assessing the dual impact of zinc oxide nanoparticles on living organisms: Beneficial and noxious effects. International Journal of Agriculture and Biosciences, 12(4):267-276.
  • Attia, H., Nounou, H., and Shalaby, M. (2018). Zinc oxide nanoparticles induced oxidative DNA damage, inflammation and apoptosis in rat’s brain after oral exposure. Toxics, 6(2):29.
  • Azam, S. E., Yasmeen, F., Rashid, M. S., and Latif, M. F. (2022). Physical factors affecting the antibacterial activity of Silver (Ag) and Zinc Oxide (ZnO) nanoparticles (NPs), there application in edible and inedible food packaging, and regulation in food products. International Journal Agriculture Biosciences. 11(3): 181-193.
  • Aziz, S., and Abdullah, S. (2023). Evaluation of Toxicity Induced by Engineered CuO Nanoparticles in Freshwater Fish, Labeo rohita. Turkish Journal of Fisheries and Aquatic Sciences, 23(8): TRJFAS18762.
  • Balkrishna, A., Kumar, A., Arya, V., Rohela, A., Verma, R., Nepovimova, E., Krejcar, O., Kumar, D., Thakur, N., and Kuca, K. (2021). Phytoantioxidant functionalized nanoparticles: A green approach to combat nanoparticle-induced oxidative stress. Oxidative Medicine and Cellular Longevity, 2021:1-20.
  • Bhagat, J., Zang, L., Kaneco, S., Nishimura, N., and Shimada, Y. (2022). Combined exposure to nanoplastics and metal oxide nanoparticles inhibits efflux pumps and causes oxidative stress in zebrafish embryos. Science of The Total Environment, 835:155436.
  • Bi, J., Mo, C., Li, S., Huang, M., Lin, Y., Yuan, P., Liu, Z., Jia, B., and Xu, S. (2023). Immunotoxicity of metal and metal oxide nanoparticles: From toxic mechanisms to metabolism and outcomes. Biomaterials Science, 11(12):4151-4183.
  • Cavallo, D., Chiarella, P., Fresegna, A. M., Ciervo, A., Del Frate, V., and Ursini, C. L. (2023). Metal Oxide Nanoparticles and Graphene‐Based Nanomaterials: Genotoxic, Oxidative, and Epigenetic Effects. Impact of Engineered Nanomaterials in Genomics and Epigenomics, 99-143.
  • Chen, C.-W., Hsu, C.-Y., Lai, S.-M., Syu, W.-J., Wang, T.-Y., and Lai, P.-S. (2014). Metal nanobullets for multidrug resistant bacteria and biofilms. Advanced drug delivery reviews, 78:88-104.
  • Devasena, T., Iffath, B., Renjith Kumar, R., Muninathan, N., Baskaran, K., Srinivasan, T., and John, S. T. (2022). Insights on the dynamics and toxicity of nanoparticles in environmental matrices. Bioinorganic Chemistry and Applications, 2022(1):4348149.
  • Dolmetsch, R. E., Xu, K., and Lewis, R. S. (1998). Calcium oscillations increase the efficiency and specificity of gene expression. Nature, 392(6679):933-936.
  • Dong, Y.-W., Jiang, W.-D., Wu, P., Liu, Y., Kuang, S.-Y., Tang, L., Tang, W.-N., Zhou, X.-Q., and Feng, L. (2022). Novel insight into nutritional regulation in enhancement of immune status and mediation of inflammation dynamics integrated study in vivo and in vitro of teleost grass carp (Ctenopharyngodon idella): administration of threonine. Frontiers in Immunology, 13:770969.
  • Dube, E., and Okuthe, G. E. (2023). Engineered nanoparticles in aquatic systems: Toxicity and mechanism of toxicity in fish. Emerging Contaminants, 9(2):100212.
  • El-Hamaky, A. M., Hassan, A. A., Wahba, A. K., and El-Mosalamy, M. M. (2023). Influence of copper and zinc nanoparticles on genotyping characterizations of multi-drug resistance genes for some calf pathogens. International Journal of Veterinary Science.12(3): 309-317.
  • Elbehary, M., Dowidar, Y. A., Ashour, A. M., El-Fattah, E. M. A., and Monir, A. (2023). Effect of in vitro maturation medium supplementation with chitosan nanoparticles on the river buffalo cumulus-oocyte complexes. International Journal of Veterinary Science 12(3): 341-346.
  • Feng, Q. L., Wu, J., Chen, G.-Q., Cui, F.-Z., Kim, T., and Kim, J. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of biomedical materials research, 52(4):662-668.
  • Fernandes, M., RB Singh, K., Sarkar, T., Singh, P., and Pratap Singh, R. (2020). Recent applications of magnesium oxide (MgO) nanoparticles in various domains. Advanced Materials Letters, 11(8):1-10.
  • García-Medina, S., Galar-Martínez, M., Cano-Viveros, S., Ruiz-Lara, K., Gómez-Oliván, L. M., Islas-Flores, H., Gasca-Pérez, E., Pérez-Pastén-Borja, R., Arredondo-Tamayo, B., and Hernández-Varela, J. (2022). Bioaccumulation and oxidative stress caused by aluminium nanoparticles and the integrated biomarker responses in the common carp (Cyprinus carpio). Chemosphere, 288:132462.
  • Ghafarifarsani, H., Hedayati, S. A., Yousefi, M., Hoseinifar, S. H., Yarahmadi, P., Mahmoudi, S. S., and Van Doan, H. (2023). Toxic and bioaccumulative effects of zinc nanoparticle exposure to goldfish, Carassius auratus (Linnaeus, 1758). Drug and Chemical Toxicology, 46(5):984-994.
  • Ghorbani, S., Moshtaghi, H., Shekarforoush, S. S., Gheisari, H. R., Sedaghati, F., Nazifi, S., and Ahmadi, N. (2023). Histopathologic, Biochemical, and Biodistribution Studies of Orally Administrated Silica and Magnesium Oxide Nanoparticles in Rats. Iranian Journal of Science. 47:695–705.
  • Ghous, M., Iqbal, S., Bakhtavar, M. A., Nawaz, F., and Khan, S. (2022). Halophyte quinoa: a potential hyperaccumulator of heavy metals for phytoremediation. Asian Journal of Agriculture and Biology. 2022(4):2021444.
  • Guimarães, A. T. B., Estrela, F. N., de Lima Rodrigues, A. S., Chagas, T. Q., Pereira, P. S., Silva, F. G., and Malafaia, G. (2021). Nanopolystyrene particles at environmentally relevant concentrations causes behavioral and biochemical changes in juvenile grass carp (Ctenopharyngodon idella). Journal of Hazardous Materials, 403:123864.
  • Gurram, S., Jha, D. K., Shah, D. S., Amin, P. D., Moravkar, K. K., and Pardeshi, C. V. (2023). Nanomaterials Toxicology: An Overview. Nanomaterial-Based Drug Delivery Systems: Therapeutic and Theranostic Applications. 327-368.
  • Hajibeygi, M., Mousavi, M., Shabanian, M., Habibnejad, N., and Vahabi, H. (2021). Design and preparation of new polypropylene/magnesium oxide micro particles composites reinforced with hydroxyapatite nanoparticles: A study of thermal stability, flame retardancy and mechanical properties. Materials Chemistry and Physics, 258:123917.
  • Hamida, R. S., Albasher, G., and Bin-Meferij, M. M. (2020). Oxidative stress and apoptotic responses elicited by nostoc-synthesized silver nanoparticles against different cancer cell lines. Cancers, 12(8):2099.
  • Hu, H., Su, M., Ba, H., Chen, G., Luo, J., Liu, F., Liao, X., Cao, Z., Zeng, J., and Lu, H. (2022). ZIF-8 nanoparticles induce neurobehavioral disorders through the regulation of ROS-mediated oxidative stress in zebrafish embryos. Chemosphere. 305:135453.
  • Hussain, R., Ali, F., Javed, M. T., Jabeen, G., Ghaffar, A., Khan, I., Liaqat, S., Hussain, T., Abbas, R. Z., and Riaz, A. (2021). Clinico-hematological, serum biochemical, genotoxic and histopathological effects of trichlorfon in adult cockerels. Toxin Reviews. 40(4):1206-1214.
  • Hussain, R., Ghaffar, A., Abbas, G., Jabeen, G., Khan, I., Abbas, R. Z., Noreen, S., Iqbal, Z., Chaudhary, I. R., and Ishaq, H. M. (2022). Thiamethoxam at sublethal concentrations induces histopathological, serum biochemical alterations and DNA damage in fish (Labeo rohita). Toxin Reviews. 41(1):154-164.
  • Idikuda, V., Jaiswal, A., Wong, Y., Bhushan, A., Leung, S., and Lai, J. (2012). Cytotoxicity of magnesium oxide nanoparticles in Schwann cells. Nano-technology. 3:342-345.
  • Jamuna Bai, A. (2011). Nanoparticles and their potential application as antimicrobials. Science against microbial pathogen.
  • Kasbaji, M., Ibrahim, I., Mennani, M., Mohamed, M. M., Salama, T. M., Moneam, I. A., Mbarki, M., Moubarik, A., and Oubenali, M. (2023). Future Trends in Dye Removal by Metal Oxides and Their Nano/Composites: A Comprehensive Review. Inorganic Chemistry Communications. 158:111546.
  • Kazmi, S. A. H., Iqbal, R., Al-Doaiss, A. A., Ali, M., Hussain, R., Latif, F., and Raza, G. A. (2023). Azoxystrobin-induced Oxidative Stress in Gills, Hematological Biomarkers and Histopathological Ailments in Fresh Water Fish. Pakistan Veterinary Journal. 43(2):321-326
  • Khan, M. S., Buzdar, S. A., Hussain, R., Afzal, G., Jabeen, G., Javid, M. A., Iqbal, R., Iqbal, Z., Mudassir, K. B., and Saeed, S. (2022). Hematobiochemical, oxidative stress, and histopathological mediated toxicity induced by nickel ferrite (NiFe 2 O 4) nanoparticles in rabbits. Oxidative Medicine and Cellular Longevity. 2022(1):5066167.
  • Kim, H. K., Park, S. K., Zhou, J.-L., Taglialatela, G., Chung, K., Coggeshall, R. E., and Chung, J. M. (2004). Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain, 111(1-2):116-124.
  • Krishnaveni, P., Thangapandiyan, M., Raja, P., and Rao, G. (2023). Pathological and molecular studies on antitumor effect of curcumin and curcumin solid lipid nanoparticles. Pakistan Veterinary Journal. 43:315-320.
  • Kumar, N., Thorat, S. T., and Reddy, K. S. (2023). Multi biomarker approach to assess manganese and manganese nanoparticles toxicity in Pangasianodon hypophthalmus. Scientific Reports. 13(1):8505.
  • Leung, Y. H., Ng, A. M., Xu, X., Shen, Z., Gethings, L. A., Wong, M. T., Chan, C. M., Guo, M. Y., Ng, Y. H., and Djurišić, A. B. (2014). Mechanisms of antibacterial activity of MgO: non‐ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small. 10(6):1171-1183.
  • Li, Y.-S., Ootsuyama, Y., Kawasaki, Y., Morimoto, Y., Higashi, T., and Kawai, K. (2018). Oxidative DNA damage in the rat lung induced by intratracheal instillation and inhalation of nanoparticles. Journal of Clinical Biochemistry and Nutrition, 62(3):238-241.
  • Llewellyn, S. V., Parak, W. J., Hühn, J., Burgum, M. J., Evans, S. J., Chapman, K. E., Jenkins, G. J., Doak, S. H., and Clift, M. J. (2022). Deducing the cellular mechanisms associated with the potential genotoxic impact of gold and silver engineered nanoparticles upon different lung epithelial cell lines in vitro. Nanotoxicology. 16(1):52-72.
  • Majeed, S. I., Mohammed, S. M., and Mohammad, A. M. (2023). Bioaccumulation and Evaluation of Magnesium Oxide Nanoparticles Toxicity and Combination Effects of Vitamin E and C with it on Exposed Male Rats. Kurdistan Journal of Applied Research.8(1):1-17.
  • Mammari, N., Lamouroux, E., Boudier, A., and Duval, R. E. (2022). Current knowledge on the oxidative-stress-mediated antimicrobial properties of metal-based nanoparticles. Microorganisms. 10(2):437.
  • Mangalampalli, B., Dumala, N., Perumalla Venkata, R., and Grover, P. (2018). Genotoxicity, biochemical, and biodistribution studies of magnesium oxide nano and microparticles in albino Wistar rats after 28‐day repeated oral exposure. Environmental Toxicology, 33(4):396-410.
  • Manke, A., Wang, L., and Rojanasakul, Y. (2013). Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed research international. 2013:15.
  • Mansoor, A., Mehmood, M., Ul Hassan, S. M., Ali, M. I., Badshah, M., and Jamal, A. (2023). Anti-Bacterial Effect of Titanium-Oxide Nanoparticles and their Application as Alternative to Antibiotics. Pakistan Veterinary Journal, 43(2): 269-275.
  • Matsumura, Y., Yoshikata, K., Kunisaki, S.-i., and Tsuchido, T. (2003). Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Applied and environmental microbiology, 69(7):4278-4281.
  • Mazaheri, N., Naghsh, N., Karimi, A., and Salavati, H. (2019). In vivo toxicity investigation of magnesium oxide nanoparticles in rat for environmental and biomedical applications. Iranian journal of biotechnology, 17(1):1543
  • Moussaoui, B., Rahali, A., and Hamed, D. (2021). Antioxidant and cytotoxic activities of alkaloids extracted from inermis nopals of Algerian Opuntia ficus-indica (L). Asian Journal of Agriculture and Biology.
  • Naguib, G. H., Abd El-Aziz, G. S., Kayal, R. A., Mira, A. I., Hajjaj, M. S., Mously, H. A., and Hamed, M. T. (2023). Cytotoxic effects of dose dependent inorganic magnesium oxide nanoparticles on the reproductive organs of rats. Annals of Medicine. 55(2):2258917.
  • Naz, S., Hussain, R., Guangbin, Z., Chatha, A. M. M., Rehman, Z. U., Jahan, S., Liaquat, M., and Khan, A. (2023). Copper sulfate induces clinico-hematological, oxidative stress, serum biochemical and histopathological changes in freshwater fish rohu (Labeo rohita). Frontiers in Veterinary Science. 10:1142042.
  • Nejati, M., Rostami, M., Mirzaei, H., Rahimi-Nasrabadi, M., Vosoughifar, M., Nasab, A. S., and Ganjali, M. R. (2022). Green methods for the preparation of MgO nanomaterials and their drug delivery, anti-cancer and anti-bacterial potentials: A review. Inorganic Chemistry Communications. 136:109107.
  • Nguyen, N. T. T., Nguyen, L. M., Nguyen, T. T. T., Tran, U. P., Nguyen, D. T. C., and Van Tran, T. (2023). A critical review on the bio-mediated green synthesis and multiple applications of magnesium oxide nanoparticles. Chemosphere. 312:137301.
  • Ohkawa, H., Ohishi, N., and Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical biochemistry. 95(2):351-358.
  • Olugbodi, J. O., Lawal, B., Bako, G., Onikanni, A. S., Abolenin, S. M., Mohammud, S. S., Ataya, F. S., and Batiha, G. E.-S. (2023). Effect of sub-dermal exposure of silver nanoparticles on hepatic, renal and cardiac functions accompanying oxidative damage in male Wistar rats. Scientific Reports. 13(1):10539.
  • Pei, X., Jiang, H., Li, C., Li, D., and Tang, S. (2023). Oxidative stress-related canonical pyroptosis pathway, as a target of liver toxicity triggered by zinc oxide nanoparticles. Journal of Hazardous Materials. 442:130039.
  • Prasad, A., Khatua, A., Mohanta, Y. K., Saravanan, M., Meena, R., and Ghosh, I. (2022). Low-dose exposure to phytosynthesized gold nanoparticles combined with glutamine deprivation enhances cell death in the cancer cell line HeLa via oxidative stress-mediated mitochondrial dysfunction and G0/G1 cell cycle arrest. Nanoscale. 14(29):10399-10417.
  • Rajan, M., Sudhabose, S., and Barween, S. R. (2023). Multifarious Magnitude of Magnesium Oxide Nanoparticles Integrated Feed on Growth and Hematological Characteristics of Mrigal Cirrhinus mrigala. A Journal of Toxicology. 13(1):1–9.
  • Rana, S., and Kalaichelvan, P. (2013). Ecotoxicity of nanoparticles. International Scholarly Research Notices. 2013(1), 574648.
  • Rani, A., Afzal, G., Mahmood, Y., Alam, S., Iqbal, Z., Akbar, M., Malik, A. N., Rizwan, M., Akram, R., and Ahmad, M. (2023). Asian Journal of Agriculture and Biology. 2023(3).
  • Rashidian, G., Lazado, C. C., Mahboub, H. H., Mohammadi-Aloucheh, R., Prokić, M. D., Nada, H. S., and Faggio, C. (2021). Chemically and green synthesized ZnO nanoparticles alter key immunological molecules in common carp (Cyprinus carpio) skin mucus. International Journal of Molecular Sciences, 22(6):3270.
  • Rawat, M., and Jain, N. (2022). Nanoparticles: Opportunities, biopharmaceuticals aspects, and applications. Multifunctional Nanocarriers. 175-201.
  • Raza, G. A., Ghaffar, A., Hussain, R., Jamal, A., Ahmad, Z., Mohamed, B. B., and Aljohani, A. S. (2022). Nuclear and morphological alterations in erythrocytes, antioxidant enzymes, and genetic disparities induced by brackish water in mrigal carp (Cirrhinus mrigala). Oxidative Medicine and Cellular Longevity. 2022(1), 4972622.
  • Rempel, S., Ogliari, A. J., Bonfim, E., Duarte, G. W., Riella, H. G., Silva, L. L., Mello, J. M. M., Baretta, C. R. D. M., and Fiori, M. A. (2020). Toxicity effects of magnesium oxide nanoparticles: a brief report. Matéria (Rio de Janeiro). 25(4):12870.
  • Ren, C., Hu, X., and Zhou, Q. (2016). Influence of environmental factors on nanotoxicity and knowledge gaps thereof. NanoImpact. 2:82-92.
  • Rostami, M. (2019). Photodecomposition and adsorption of hazardous organic pollutants by Ce-doped ZnO@ Ce-doped TiO2-N/S-dual doped RGO ternary nano-composites photocatalyst for water remediation. Journal of Molecular Structure. 1185:191-199.
  • Sabella, S., Carney, R. P., Brunetti, V., Malvindi, M. A., Al-Juffali, N., Vecchio, G., Janes, S. M., Bakr, O. M., Cingolani, R., and Stellacci, F. (2014). A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale, 6(12):7052-7061.
  • Saeed, A. Q., and Al-Obad, Z. K. M. (2023). Effect of magnesium oxide, boron nitride, and hybrid nanoparticles on the mechanical properties of epoxy nanocomposites. AIP Conference Proceedings. 2830 (1).
  • Samim, A., Arshad, M., and Vaseem, H. (2023). An insight into various biomarkers to study toxicological impact of nanoparticles in fishes: explored and missing information. International Journal of Environmental Science and Technology, 20(9):10533-10552.
  • Sanati, M., Afshari, A. R., Kesharwani, P., Sukhorukov, V. N., and Sahebkar, A. (2022). Recent trends in the application of nanoparticles in cancer therapy: The involvement of oxidative stress. Journal of Controlled Release. 348:287-304.
  • Sial, B. E., Ali, S. A., Aslam, N., Maqsood, R., Iqbal, S., Mehmood, Y., and Mustafa, G. (2023). ZnO Nanoparticles Impact on Organ Systems in Rats: A Comprehensive Exploration of Diverse Exposure Pathways. Journal of Zoology and Systematics. 1(1):37-51.
  • Sibiya, A., Gopi, N., Jeyavani, J., Mahboob, S., Al-Ghanim, K. A., Sultana, S., Mustafa, A., Govindarajan, M., and Vaseeharan, B. (2022). Comparative toxicity of silver nanoparticles and silver nitrate in freshwater fish Oreochromis mossambicus: A multi-biomarker approach. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 259:109391.
  • Singh, N. P., McCoy, M. T., Tice, R. R., and Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental cell research, 175(1):184-191.
  • Sohouli, E., Ghalkhani, M., Rostami, M., Rahimi-Nasrabadi, M., and Ahmadi, F. (2020). A noble electrochemical sensor based on TiO2@ CuO-N-rGO and poly (L-cysteine) nanocomposite applicable for trace analysis of flunitrazepam. Materials Science and Engineering: C. 117:111300.
  • Sovová, T., Kocí, V., and Kochánková, L. (2009). Ecotoxicity of nano and bulk forms of metal oxides. Proceedings, NANOCON Conference, Roznov pod Radhostem. Czech Republic,
  • Srisuvetha, V., Rayar, S., and Shanthi, G. (2020). Role of cerium (Ce) dopant on structural, optical and photocatalytic properties of MgO nanoparticles by wet chemical route. Journal of Materials Science: Materials in Electronics, 31(4):2799-2808.
  • Sudhabose, S., Sooryakanth, B., and Rajan, M. R. (2023). Impact of acute and sub-acute exposure of magnesium oxide nanoparticles on mrigal Cirrhinus mrigala. Heliyon, 9(4).
  • Sudhabose, S., Sooryakanth, B., and Rajan, M. R. (2024). Acute Toxicity, Hematological Profile, and Histopathological Effects of MgO Nanoparticles on Gills, Muscle, Liver of Mrigal, Cirrhinus mrigala. Biological Trace Element Research, 202(2):736-742.
  • Tahir, R., Ghaffar, A., Abbas, G., Turabi, T., Kausar, S., Xiaoxia, D., and Abdelgayed, S. (2021). Pesticide induced hematological, biochemical and genotoxic changes in fish: a review. Agrobiol Rec 3: 41–57.
  • Thomas, J., Vijayakumar, S., Thanigaivel, S., Mukherjee, A., and Chandrasekaran, N. (2014). Toxicity of magnesium oxide nanoparticles in two fresh water fishes tilapia (Oreochromis mossambicus) and zebrafish (Danio rerio). International Journal of Pharmacy and Pharmaceutical Sciences. 6:487-490.
  • Tulinska, J., Mikusova, M. L., Liskova, A., Busova, M., Masanova, V., Uhnakova, I., Rollerova, E., Alacova, R., Krivosikova, Z., and Wsolova, L. (2022). Copper oxide nanoparticles stimulate the immune response and decrease antioxidant defense in mice after six-week inhalation. Frontiers in Immunology. 13:874253.
  • Ullah, A., Al-Saeed, F. A., Abduallah, A. M., Ahmed, A. E., Shahzad, A., Amjad, N., Ali, A., Mostafa, M. S., and Hussain, R. (2023). Calcium Nanoparticles Induce Oxidative Stress in Erythrocytes, Neurotoxicity and Testicular Toxicity in Albino Rats (Rattus norvegicus). Pakistan Veterinary Journal. 43(2)
  • Venkatappa, M. M., Udagani, C., Hanumegowda, S. M., Pramod, S. N., Venkataramaiah, S., Rangappa, R., Achur, R., Alataway, A., Dewidar, A. Z., and Al-Yafrsi, M. (2022). Effect of Biofunctional Green Synthesized MgO-Nanoparticles on Oxidative-Stress-Induced Tissue Damage and Thrombosis. Molecules, 27(16):5162.
  • Verma, S. K., Nisha, K., Panda, P. K., Patel, P., Kumari, P., Mallick, M., Sarkar, B., and Das, B. (2020). Green synthesized MgO nanoparticles infer biocompatibility by reducing in vivo molecular nanotoxicity in embryonic zebrafish through arginine interaction elicited apoptosis. Science of The Total Environment. 713:136521.
  • Vetrivelan, V. (2018). Spectra, electronic properties, biological activities and molecular docking investigation on sulfonamide derivative compound: an experimental and computational approach. Journal of nanoscience and technology. 348-352.
  • Vo, V.-T., Le, T.-M.-L., Duong, T.-Q.-A., Mai, N.-A.-T., and Thuong, H. N. T. (2022). Assessment of lead toxicity in red tilapia Oreochromis sp. through hematological parameters. Asain Journal of Agriculture and Biology. 10(2):202101016.
  • Vyshnav, G., Sudhabose, S., and Rajan, M. (2023). Impact of Magnesium Oxide Nanoparticles on Hematological, Biochemical and Antioxidant Levels of Mrigal Cirrhinus Mrigala. Journal of Material Sciences & Manufacturing Research. 152 (4): 2-8.
  • Xia, T., Kovochich, M., Liong, M., Madler, L., Gilbert, B., Shi, H., Yeh, J. I., Zink, J. I., and Nel, A. E. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS nano. 2(10):2121-2134.
  • Yalçın, B., Güneş, M., Kurşun, A. Y., Kaya, N., Marcos, R., and Kaya, B. (2022). Genotoxic hazard assessment of cerium oxide and magnesium oxide nanoparticles in Drosophila. Nanotoxicology. 16(3):393-407.
  • Zhao, H., Wang, Y., Guo, M., Liu, Y., Yu, H., and Xing, M. (2021). Environmentally relevant concentration of cypermethrin or/and sulfamethoxazole induce neurotoxicity of grass carp: involvement of blood-brain barrier, oxidative stress and apoptosis. Science of the Total Environment. 762:143054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.