0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Using machine learning to classify the immunosuppressive activity of per- and polyfluoroalkyl substances

, , , , , , , & ORCID Icon show all
Received 27 May 2024, Accepted 29 Jul 2024, Published online: 05 Aug 2024

References

  • Altman N, Krzywinski M. 2017. Ensemble methods: bagging and random forests. Nat Methods. 14(10):933–934. doi: 10.1038/nmeth.4438.
  • Andersson EM, Scott K, Xu Y, Li Y, Olsson DS, Fletcher T, Jakobsson K. 2019. High exposure to perfluorinated compounds in drinking water and thyroid disease. A cohort study from Ronneby, Sweden. Environ Res. 176:108540. doi: 10.1016/j.envres.2019.108540.
  • Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, De Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SP. 2011. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag. 7(4):513–541. doi: 10.1002/ieam.258.
  • Cai J, Luo J, Wang S, Yang S. 2018. Feature selection in machine learning: a new perspective. Neurocomputing. 300:70–79. doi: 10.1016/j.neucom.2017.11.077.
  • Chen H, Du X, Tang W, Zhou Y, Zuo J, Feng H, Li Y. 2008. Synthesis and structure–immunosuppressive activity relationships of bakuchiol and its derivatives. Bioorg Med Chem. 16(5):2403–2411. doi: 10.1016/J.BMC.2007.11.054.
  • Cheng W, Ng CA. 2019. Using machine learning to classify bioactivity for 3486 per- and polyfluoroalkyl substances (PFASs) from the OECD list. Environ Sci Technol. 53(23):13970–13980. doi: 10.1021/acs.est.9b04833.
  • Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, et al. 2014. QSAR modeling: where have you been? Where are you going to? J Med Chem. 57(12):4977–5010. doi: 10.1021/jm4004285.
  • DeWitt JC, Copeland CB, Strynar MJ, Luebke RW. 2008. Perfluorooctanoic acid–induced immunomodulation in adult C57BL/6J or C57BL/6N female mice. Environ Health Perspect. 116(5):644–650. doi: 10.1289/ehp.10896.
  • Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, Herzke D, Lohmann R, Ng CA, Trier X, Wang Z. 2020. An overview of the uses of per-and polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts. 22(12):2345–2373. doi: 10.1289/ehp.10896.
  • Goel M, Sharma A, Chilwal AS, Kumari S, Kumar A, Bagler G. 2023. Machine learning models to predict sweetness of molecules. Comput Biol Med. 152:106441. doi: 10.1016/j.compbiomed.2022.106441.
  • Goodarzi M, Dejaegher B, Heyden YV. 2012. Feature selection methods in QSAR studies. J AOAC Int. 95(3):636–651. doi: 10.5740/jaoacint.sge_goodarzi.
  • Granum B, Haug LS, Namork E, Stølevik SB, Thomsen C, Aaberge IS, van Loveren H, Løvik M, Nygaard UC. 2013. Pre-natal exposure to perfluoroalkyl substances may be associated with altered vaccine antibody levels and immune-related health outcomes in early childhood. J Immunotoxicol. 10(4):373–379. doi: 10.3109/1547691X.2012.755580.
  • Gregorutti B, Michel B, Saint-Pierre P. 2017. Correlation and variable importance in random forests. Stat Comput. 27(3):659–678. doi: 10.1007/s11222-016-9646-1.
  • Herzke D, Olsson E, Posner S. 2012. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway–A pilot study. Chemosphere. 88(8):980–987. doi: 10.1016/j.chemosphere.2012.03.035.
  • Houck KA, Friedman KP, Feshuk M, Patlewicz G, Smeltz M, Clifton MS, Wetmore BA, Velichko S, Berenyi A, Berg EL. 2023. Evaluation of 147 perfluoroalkyl substances for immunotoxic and other (patho) physiological activities through phenotypic screening of human primary cells. ALTEX. 40(2):248–270. doi: 10.14573/altex.2203041.
  • Jain AN, Nicholls A. 2008. Recommendations for evaluation of computational methods. J Comput Aided Mol Des. 22(3-4):133–139. doi: 10.1007/s10822-008-9196-5.
  • Kar S, Sepúlveda MS, Roy K, Leszczynski J. 2017. Endocrine-disrupting activity of per-and polyfluoroalkyl substances: exploring combined approaches of ligand and structure based modeling. Chemosphere. 184:514–523. doi: 10.1016/j.chemosphere.2017.06.024.
  • Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M, Frederic J, Kelley K, Hamrick JB, Grout J, Corlay S. 2016. Jupyter Notebooks - a publishing format for reproducible computational workflows. Elpub. 2016:87–90. doi: 10.3233/978-1-61499-649-1-87.
  • Kwon H, Ali ZA, Wong BM. 2023. Harnessing semi-supervised machine learning to automatically predict bioactivities of per- and polyfluoroalkyl substances (PFASs). Environ Sci Technol Lett. 10(11):1017–1022. doi: 10.1021/acs.estlett.2c00530.
  • Ladics GS. 2018. The sheep erythrocyte T-dependent antibody response (TDAR). Methods Mol Biol. 1803:83–94. doi: 10.1007/978-1-4939-8549-4_6.
  • Li J, Cao H, Feng H, Xue Q, Zhang A, Fu J. 2020. Evaluation of the estrogenic/antiestrogenic activities of perfluoroalkyl substances and their interactions with the human estrogen receptor by combining in vitro assays and in silico modeling. Environ Sci Technol. 54(22):14514–14524. doi: 10.1021/acs.est.0c03468.
  • Li R, Zhang Z, Xuan Y, Wang Y, Zhong Y, Zhang L, Zhang J, Chen Q, Yu S, Yuan J. 2024. HNF4A as a potential target of PFOA and PFOS leading to hepatic steatosis: integrated molecular docking, molecular dynamic and transcriptomic analyses. Chem Biol Interact. 390:110867. doi: 10.1016/j.cbi.2024.110867.
  • Loveless SE, Hoban D, Sykes G, Frame SR, Everds NE. 2008. Evaluation of the immune system in rats and mice administered linear ammonium perfluorooctanoate. Toxicol Sci. 105(1):86–96. doi: 10.1093/toxsci/kfn113.
  • Mitchell JB. 2014. Machine learning methods in chemoinformatics. Wiley Interdiscip Rev Comput Mol Sci. 4(5):468–481. doi: 10.1002/wcms.1183.
  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. 2011. Scikit-learn: machine learning in Python. J Math Learn Res. 12:2825–2830. doi: 10.5555/1953048.2078195.
  • Pinton L, Magri S, Masetto E, Vettore M, Schibuola I, Ingangi V, Marigo I, Matha K, Benoit J-P, Della Puppa A, et al. 2020. Targeting of immunosuppressive myeloid cells from glioblastoma patients by modulation of size and surface charge of lipid nanocapsules. J Nanobiotechnology. 18(1):31. doi: 10.1186/s12951-020-00589-3.
  • Raza A, Bardhan S, Xu L, Yamijala S, Lian C, Kwon H, Wong BM. 2019. A machine learning approach for predicting defluorination of per- and polyfluoroalkyl substances (PFAS) for their efficient treatment and removal. Environ Sci Technol Lett. 6(10):624–629. doi: 10.1021/acs.estlett.9b00476.
  • Ren J, Jin T, Li R, Zhong Y, Xuan Y, Wang Y, Yao W, Yu S, Yuan J. 2023. Priority list of potential endocrine-disrupting chemicals in food chemical contaminants: a docking study and in vitro/epidemiological evidence integration. SAR QSAR Environ Res. 34(10):847–866. doi: 10.1080/1062936X.2023.2269855.
  • Sahigara F, Mansouri K, Ballabio D, Mauri A, Consonni V, Todeschini R. 2012. Comparison of different approaches to define the applicability domain of QSAR models. Molecules. 17(5):4791–4810. doi: 10.3390/molecules17054791.
  • Stein CR, McGovern KJ, Pajak AM, Maglione PJ, Wolff MS. 2016. Perfluoroalkyl and polyfluoroalkyl substances and indicators of immune function in children aged 12–19 y: National Health and Nutrition Examination Survey. Pediatr Res. 79(2):348–357. doi: 10.1038/pr.2015.213.
  • Talmadge JE. 2007. Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin Cancer Res. 13(18 Pt 1):5243–5248. doi: 10.1158/1078-0432.CCR-07-0182.
  • Truong L, Rericha Y, Thunga P, Marvel S, Wallis D, Simonich MT, Field JA, Cao D, Reif DM, Tanguay RL. 2022. Systematic developmental toxicity assessment of a structurally diverse library of PFAS in zebrafish. J Hazard Mater. 431:128615. doi: 10.1016/j.jhazmat.2022.128615.
  • Varnek A, Baskin I. 2012. Machine learning methods for property prediction in chemoinformatics: quo Vadis? J Chem Inf Model. 52(6):1413–1437. doi: 10.1021/ci200409x.
  • Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, Leswing K, Pande V. 2018. MoleculeNet: a benchmark for molecular machine learning. Chem Sci. 9(2):513–530. doi: 10.1039/c7sc02664a.
  • Xiao F, Ding X, Shi Y, Wang D, Wang Y, Cui C, Zhu T, Chen K, Xiang P, Luo X. 2024. Application of ensemble learning for predicting GABAA receptor agonists. Comput Biol Med. 169:107958. doi: 10.1016/j.compbiomed.2024.107958.
  • Zhang Y, Mustieles V, Sun Y, Oulhote Y, Wang YX, Messerlian C. 2022. Association between serum per-and polyfluoroalkyl substances concentrations and common cold among children and adolescents in the United States. Environ Int. 164:107239. doi: 10.1016/j.envint.2022.107239.
  • Zhao J, Shi X, Wang Z, Xiong S, Lin Y, Wei X, Li Y, Tang X. 2023. Hepatotoxicity assessment investigations on PFASs targeting L-FABP using binding affinity data and machine learning-based QSAR model. Ecotoxicol Environ Saf. 262:115310. doi: 10.1016/j.ecoenv.2023.115310.
  • Zhong Y, Ren J, Li R, Xuan Y, Yao W, Yang Q, Gan Y, Yu S, Yuan J. 2023. Prediction of the Endocrine disruption profile of fluorinated biphenyls and analogues: an in silico study. Chemosphere. 314:137701. doi: 10.1016/j.chemosphere.2022.137701.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.