59
Views
1
CrossRef citations to date
0
Altmetric
Research Article

RNA Degradation in Yeast and Human Mitochondria

, , , , , & show all
Pages 53-57 | Published online: 30 Sep 2008

References

  • Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R., and Young, I. G. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457–465.
  • Butow, R. A., Zhu, H., Perlman, P., and Conrad-Webb, H. 1989. The role of a conserved dodecamer sequence in yeast mitochondrial gene expression. Genome 31:757–760.
  • Carpousis, A. J. 2002. The Escherichia coli RNA degradosome: structure, function and relationship in other ribonucleolytic multienzyme complexes. Biochem. Soc. Trans. 30:150–155.
  • Chen, W., Islas-Osuna, M. A., and Dieckmann, C. L. 1999. Suppressor analysis of mutations in the 5′-untranslated region of COB mRNA identifies components of general pathways for mitochondrial mRNA processing and decay in Saccharomyces cerevisiae. Genetics 151:1315–1325.
  • Coburn, G. A., and Mackie, G. A. 1999. Degradation of mRNA in Escherichia coli: an old problem with some new twists. Prog. Nucleic Acid Res. Mol. Biol. 62: 55–108.
  • Dmochowska, A., Golik, P., and Stepien, P. P. 1995. The novel nuclear gene DSS-1 of Saccharomyces cerevisiae is necessary for mitochondrial biogenesis. Curr. Genet. 28:108–112.
  • Dmochowska, A., Kalita, K., Krawczyk, M., Golik, P., Mroczek, K., Lazowska, J., Stepien, P. P., and Bartnik, E. 1999. A human putative Suv3-like RNA helicase is conserved between Rhodobacter and all eukaryotes. Acta Biochim. Pol. 46:155–162.
  • Dziembowski, A., Piwowarski, J., Hoser, R., Minczuk, M., Dmochowska, A., Siep, M., van der Spek, H., Grivell, L., and Stepien, P. P. 2003. The yeast mitochondrial degradosome: its composition, interplay between RNA helicase and RNase activities and the role in mitochondrial RNA metabolism. J. Biol. Chem. 278:1603–1611.
  • Gagliardi, D., and Leaver, C. J. 1999. Polyadenylation accelerates the degradation of the mitochondrial mRNA associated with cytoplasmic male sterility in sunflower. Eur. J. Biochem. 18:3757–3766.
  • Gagliardi, D., Perrin, R., Marechal-Drouard, L., Grienenberger, J., and Leaver, C. J. 2001. Plant mitochondrial polyadenylated mRNA are degraded by a 3′ to 5′ exoribonuclease activity, which proceeds unimpeded by stale secondary structures. J. Biol. Chem. 276:43541–43547.
  • Golik, P., Szczepanek, T., Bartnik, E., Stepien, P. P., and Lazowska, J. 1995. The S. cerevisiae nuclear gene SUV3 encoding a putative RNA helicase is necessary for the stability of mitochondrial transcripts containing multiple introns. Curr. Genet. 28:217–224.
  • Grivell, L. A. 1995. Nucleo-mitochondrial interactions in mitochondrial gene expression. Crit. Rev. Biochem. Mol. Biol. 30:121–164.
  • Hanekamp, T., and Thorsness, P. E. 1999. YNT20, a bypass suppressor of yme1 yme2, encodes a putative 3′-5′ exonuclease localized in mitochondria of Saccharomyces cerevisiae. Curr. Genet. 34:438–448.
  • Hayes, R., Kudla, J., and Gruissem, W. 1999. Degrading chloroplast mRNA: the role of polyadenylation. Trends Biochem. Sci. 24:199–202.
  • Islas-Osuna, M. A., Ellis, T. P., Marnell, L. L., Mittelmeier, T.M., and Dieckmann, C. L. 2002. Cbp1 is required for translation of the mitochondrial cytochrome b mRNA of Saccharomyces cerevisiae. J. Biol. Chem. 277:37987–37990.
  • Lemm, I., and Ross, J. 2002. Regulation of c-myc mRNA decay by translational pausing in a coding region instability determinant. Mol. Cell. Biol. 22:3959–3969.
  • Le Roy, F., Bisbal, C., Silhol, M., Martinand, C., Lebleu, B., and Salehzada, T. 2001. The 2-5A/RNase L/RNase L inhibitor (RLI) [correction of (RNI)] pathway regulates mitochondrial mRNAs stability in interferon alpha-treated H9 cells. J. Biol. Chem. 276:48473–48478.
  • Leszczyniecka, M., Kang, D. C., Sarkar, D., Su, Z. Z., Holmes, M., Valerie, K., and Fisher, P. B. 2002. Identification and cloning of human polynucleotide phosphorylase, hPNPase old-35, in the context of terminal differentiation and cellular senescence. Proc. Natl. Acad. Sci. USA 99:16636–16641.
  • Li, H., and Zassenhaus H. P. 1999. Purification and characterization of an RNA dodecamer sequence binding protein from mitochondria of Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 261:740–745.
  • Lisitsky, I., Kotler, A., and Schuster, G. 1997. The mechanism of preferential degradation of polyadenylated RNA in the chloroplast: the exoribonuclease 100RNP/polynucleotide phosphorylase displays high binding affinity for poly(A) sequence. J. Biol. Chem. 272:17648–17653.
  • Low, R. L. 2003. Mitochondrial endonuclease G function in apoptosis and mtDNA metabolism: a historical perspective. Mitochondrion 2:225–236.
  • Lupold, D. S., Caoile, A. G., and Stern D. B., 1999. Polyadenylation occurs at multiple sites in maize mitochondrial cox2 mRNA and is independent of editing status. Plant Cell. 11:1565–1578.
  • Maeda, I., Kohara, Y., Yamamoto, M., and Sugimoto, A. 2001. Large–scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr. Biol. 11:171–176.
  • Margossian, S. P., Li, H., Zassenhaus, H. P., and Butow, R. A. 1996. The DExH box protein Suv3p is a component of a yeast mitochondrial 3′-to-5′ exoribonuclease that suppresses group I intron toxicity. Cell 84:199–209.
  • Min, J., Heuertz, R. M., and Zassenhaus, H. P. 1993. Isolation and characterization of an NTP-dependent 3′-exoribonuclease from mitochondria of Saccharomyces cerevisiae. J. Biol. Chem. 268:7350–7357.
  • Min, J., and Zassenhaus, H. P. 1993. Identification of a protein complex that binds to a dodecamer sequence found at the 3′ ends of yeast mitochondrial mRNAs. Mol Cell Biol. 13:4167–4173.
  • Minczuk, M., Piwowarski, J., Papworth, M. A., Awiszus, K., Schalinski, S., Dziembowski, A., Dmochowska, A., Bartnik, E., Tokatlidis, K., Stepien, P. P., and Borowski, P. 2002. Localisation of the human hSuv3p helicase in the mitochondrial matrix and its preferential unwinding of dsDNA. Nucleic Acids Res. 30:5074–5086.
  • Mohanty, B. K., and Kushner, S. R. 2002. Polyadenylation of Escherichia coli transcripts plays an integral role in regulating intracellular levels of polynucleotide phosphorylase and RNase E. Mol. Microbiol. 45:1315–1324.
  • Montoya, J., Ojala, D., and Attardi, G. 1981. Distinctive features of the 5′-terminal sequences of the human mitochondrial mRNAs. Nature 290:465–470.
  • Nguyen, L. H., Erzberger, J. P.,Root, J.,and Wilson, D. M. 3rd. 2000. The human homolog of Escherichia coli Orn degrades small single-stranded RNA and DNA oligomers. J. Biol. Chem. 275:25900–25906.
  • Ohsato, T., Ishihara, N., Muta, T., Umeda, S., Ikeda, S., Mihara, K., Hamasaki, N., and Kang, D. 2002. Mammalian mitochondrial endonuclease G: digestion of R-loops and localization in intermembrane space. Eur. J. Biochem. 269:5765–5770.
  • Ojala, D., Montoya, J., and Attardi, G. 1981. tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474.
  • Piwowarski, J., Grzechnik, P., Dziembowski, A., Dmochowska, A., Minczuk, M., and Stepien, P. P. 2003. Human polynucleotide phosphorylase, hPNPase, is localized in mitochondria. J. Mol. Biol. 329:853–857.
  • Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. 1999. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17:1030–1032.
  • Sarkar, D., Leszczyniecka, M., Kang, D. C., Lebedeva, I. V., Valerie, K, Dhar, S, Pandita, T. K., and Fisher, P. B. 2003. Downregulation of Myc as a potential target for growth arrest induced by human polynucleotide phosphorylase (hPNPaseold-35) in human melanoma cells. J. Biol. Chem. 278:24542–51.
  • Shadel, G. S., and Clayton, D. A. 1997. Mitochondrial DNA maintenance in vertebrates. Ann. Rev. Biochem. 66:409–435.
  • Silverman, R. H. 2003. Implications for RNase L in prostate cancer biology. Biochemistry 42:1805–1812.
  • Stepien, P. P., Margossian, S. P., Landsman, D., and Butow R. A. 1992. The yeast nuclear gene suv3 affecting mitochondrial post-transcriptional processes encodes a putative ATP-dependent RNA helicase. Proc. Natl. Acad. Sci. USA 89:6813–6817.
  • Takaku, H., Minagawa, A., Takagi, M., and Nashimoto, M. 2003. A candidate prostate cancer susceptibility gene encodes tRNA 3′ processing endoribonuclease. Nucleic Acids Res. 31:2272–2278.
  • Veyrune, J. L., Carillo, S., Vie, A., and Blanchard, J. M. 1995. c-fos mRNA instability determinants present within both the coding and the 3′ noncoding region link the degradation of this mRNA to its translation. Oncogene 11:2127–2134.
  • Vincent, R. D., Hofmann, T. J., and Zassenhaus, H. P. 1988. Sequence and expression of NUC1, the gene encoding the mitochondrial nuclease in Saccharomyces cerevisiae. Nucleic Acids Res. 16:3297–3312.
  • Wahle, E., and Kuhn, U. 1997. The mechanism of 3′ cleavage and polyadenylation of eukaryotic pre-mRNA. Prog. Nucleic Acid Res. Mol. Biol. 57:41–71.
  • Warnick, C. T., and Lazarus, H. M. 1977. The subcellular distribution of poly A-degrading activity in mouse kidney. Can. J. Biochem. 55:485–488.
  • Wegierski, T., Dmochowska, A., Jablonowska, A., Dziembowski, A., Bartnik, E., and Stepien, P. P. 1998. Yeast nuclear PET127 gene can suppress deletions of the SUV3 or DSS1 genes: an indication of a functional interaction between 3′ and 5′ ends of mitochondrial mRNAs. Acta. Biochim. Pol. 45: 935–940.
  • Welk, J. F., Charlesworth, A., Smith, G. D., and MacNicol, A. M. 2001. Identification and characterization of the gene encoding human cytoplasmic polyadenylation element binding protein. Gene 263:113–120.
  • Wiesenberger, G., and Fox, T. D. 1997. Pet127p, a membrane–associated protein involved in stability and processing of Saccharomyces cerevisiae mitochondrial RNAs. Mol. Cell. Biol. 17:2816–2824.
  • Yehudai-Resheff, S., Hirsh, M., and Schuster, G. 2001. Polynucleotide phosphorylase functions as both an exonuclease and a poly(A) polymerase in spinach chloroplasts. Mol. Cell. Biol. 21:5408–5416.
  • Zassenhaus, H. P., and Denniger, G. 1994. Analysis of the role of the NUC1 endo/exonuclease in yeast mitochondrial DNA recombination. Curr. Genet. 25:142–149.
  • Zassenhaus, H. P., Hofmann, T. J., Uthayashanker, R., Vincent, R. D., and Zona, M. 1988. Construction of a yeast mutant lacking the mitochondrial nuclease. Nucleic Acids Res. 16:3283–3296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.