2,178
Views
50
CrossRef citations to date
0
Altmetric
Research Paper

Anti-cancer activity of withaferin A in B-cell lymphoma

, , , , , & show all
Pages 1088-1098 | Received 14 Apr 2015, Accepted 25 Apr 2015, Published online: 06 Jul 2015

References

  • Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975-2011, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2011/
  • Young RM, Staudt LM. Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat Rev Drug Discovery 2013; 12:229-43; PMID:23449308; http://dx.doi.org/10.1038/nrd3937
  • Blenk S, Engelmann J, Weniger M, Schultz J, Dittrich M, Rosenwald A, Muller-Hermelink HK, Muller T, Dandekar T. Germinal center B cell-like (GCB) and activated B cell-like (ABC) type of diffuse large B cell lymphoma (DLBCL): analysis of molecular predictors, signatures, cell cycle state and patient survival. Cancer Informat 2007; 3:399-420; PMID:19455257
  • Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403:503-11; PMID:10676951; http://dx.doi.org/10.1038/35000501
  • Davis RE, Brown KD, Siebenlist U, Staudt LM. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 2001; 194:1861-74; PMID:11748286; http://dx.doi.org/10.1084/jem.194.12.1861
  • Staudt LM. Oncogenic activation of NF-kappaB. Cold Spring Harbor Perspect Biol 2010; 2:a000109; http://dx.doi.org/10.1101/cshperspect.a000109
  • Lim KH, Yang Y, Staudt LM. Pathogenetic importance and therapeutic implications of NF-kappaB in lymphoid malignancies. Immunol Rev 2012; 246:359-78; PMID:22435566; http://dx.doi.org/10.1111/j.1600-065X.2012.01105.x
  • Ke J, Chelvarajan RL, Sindhava V, Robertson DA, Lekakis L, Jennings CD, Bondada S. Anomalous constitutive Src kinase activity promotes B lymphoma survival and growth. Mol Cancer 2009; 8:132; PMID:20043832; http://dx.doi.org/10.1186/1476-4598-8-132
  • Gururajan M, Jennings CD, Bondada S. Cutting edge: constitutive B cell receptor signaling is critical for basal growth of B lymphoma. J Immunol 2006; 176:5715-9; PMID:16670274; http://dx.doi.org/10.4049/jimmunol.176.10.5715
  • Rickert RC. New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat Rev Immunol 2013; 13:578-91; PMID:23883968; http://dx.doi.org/10.1038/nri3487
  • Cultrera JL, Dalia SM. Diffuse large B-cell lymphoma: current strategies and future directions. Cancer Control 2012; 19:204-13; PMID:22710896
  • Nobili S, Lippi D, Witort E, Donnini M, Bausi L, Mini E, Capaccioli S. Natural compounds for cancer treatment and prevention. Pharmacol Res 2009; 59:365-78; PMID:19429468; http://dx.doi.org/10.1016/j.phrs.2009.01.017
  • Vanden Berghe W, Sabbe L, Kaileh M, Haegeman G, Heyninck K. Molecular insight in the multifunctional activities of Withaferin A. Biochem Pharmacol 2012; 84:1282-91; PMID:22981382; http://dx.doi.org/10.1016/j.bcp.2012.08.027
  • Vyas AR, Singh SV. Molecular targets and mechanisms of cancer prevention and treatment by withaferin a, a naturally occurring steroidal lactone. AAPS J 2014; 16:1-10; PMID:24046237; http://dx.doi.org/10.1208/s12248-013-9531-1
  • Yu Y, Hamza A, Zhang T, Gu M, Zou P, Newman B, Li Y, Gunatilaka AA, Zhan CG, Sun D. Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 2010; 79:542-51; PMID:19769945; http://dx.doi.org/10.1016/j.bcp.2009.09.017
  • Nagalingam A, Kuppusamy P, Singh SV, Sharma D, Saxena NK. Mechanistic elucidation of the antitumor properties of withaferin a in breast cancer. Cancer Res 2014; 74:2617-29; PMID:24732433; http://dx.doi.org/10.1158/0008-5472.CAN-13-2081
  • Cai Y, Sheng ZY, Chen Y, Bai C. Effect of Withaferin A on A549 cellular proliferation and apoptosis in non-small cell lung cancer. Asian Pacific J Cancer Prevention 2014; 15:1711-4; PMID:24641396; http://dx.doi.org/10.7314/APJCP.2014.15.4.1711
  • Munagala R, Kausar H, Munjal C, Gupta RC. Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis 2011; 32:1697-705; PMID:21859835; http://dx.doi.org/10.1093/carcin/bgr192
  • Srinivasan S, Ranga RS, Burikhanov R, Han SS, Chendil D. Par-4-dependent apoptosis by the dietary compound withaferin A in prostate cancer cells. Cancer Res 2007; 67:246-53; PMID:17185378; http://dx.doi.org/10.1158/0008-5472.CAN-06-2430
  • Stan SD, Zeng Y, Singh SV. Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells. Nutrition Cancer 2008; 60 1:51-60; PMID:19003581; http://dx.doi.org/10.1080/01635580802381477
  • Grover A, Shandilya A, Punetha A, Bisaria VS, Sundar D. Inhibition of the NEMO/IKKbeta association complex formation, a novel mechanism associated with the NF-kappaB activation suppression by withania somnifera's key metabolite withaferin A. BMC Genomics 2010; 11 4:S25; PMID:21143809; http://dx.doi.org/10.1186/1471-2164-11-S4-S25
  • Kaileh M, Vanden Berghe W, Heyerick A, Horion J, Piette J, Libert C, De Keukeleire D, Essawi T, Haegeman G. Withaferin a strongly elicits IkappaB kinase β hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Biol Chem 2007; 282:4253-64; PMID:17150968; http://dx.doi.org/10.1074/jbc.M606728200
  • Gray PJ, Jr., Prince T, Cheng J, Stevenson MA, Calderwood SK. Targeting the oncogene and kinome chaperone CDC37. Nat Rev Cancer 2008; 8:491-5; PMID:18511936; http://dx.doi.org/10.1038/nrc2420
  • Raina A, Kaul D. LXR-α genomics programmes neuronal death observed in Alzheimer's disease. Apoptosis 2010; 15:1461-9; PMID:20927647; http://dx.doi.org/10.1007/s10495-010-0541-5
  • Franchitto A, Torrice A, Semeraro R, Napoli C, Nuzzo G, Giuliante F, Alpini G, Carpino G, Berloco PB, Izzo L, et al. Prostate apoptosis response-4 is expressed in normal cholangiocytes, is down-regulated in human cholangiocarcinoma, and promotes apoptosis of neoplastic cholangiocytes when induced pharmacologically. Am J Pathol 2010; 177:1779-90; PMID:20724592; http://dx.doi.org/10.2353/ajpath.2010.091171
  • Burikhanov R, Shrestha-Bhattarai T, Qiu S, Shukla N, Hebbar N, Lele SM, Horbinski C, Rangnekar VM. Novel mechanism of apoptosis resistance in cancer mediated by extracellular PAR-4. Cancer Res 2013; 73:1011-9; PMID:23204231; http://dx.doi.org/10.1158/0008-5472.CAN-12-3212
  • Gauld SB, Cambier JC. Src-family kinases in B-cell development and signaling. Oncogene 2004; 23:8001-6; PMID:15489917; http://dx.doi.org/10.1038/sj.onc.1208075
  • Mandal C, Dutta A, Mallick A, Chandra S, Misra L, Sangwan RS. Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade. Apoptosis 2008; 13:1450-64; PMID:18987975; http://dx.doi.org/10.1007/s10495-008-0271-0
  • Malik F, Kumar A, Bhushan S, Khan S, Bhatia A, Suri KA, Qazi GN, Singh J. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine. Apoptosis 2007; 12:2115-33; PMID:17874299; http://dx.doi.org/10.1007/s10495-007-0129-x
  • Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Proliferation 2003; 36:131-49; PMID:12814430; http://dx.doi.org/10.1046/j.1365-2184.2003.00266.x
  • Samadi AK, Cohen SM, Mukerji R, Chaguturu V, Zhang X, Timmermann BN, Cohen MS, Person EA. Natural withanolide withaferin A induces apoptosis in uveal melanoma cells by suppression of Akt and c-MET activation. Tumour Biol 2012; 33:1179-89; PMID:22477711; http://dx.doi.org/10.1007/s13277-012-0363-x
  • Grogan PT, Sleder KD, Samadi AK, Zhang H, Timmermann BN, Cohen MS. Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways. Invest New Drugs 2013; 31:545-57; PMID:23129310; http://dx.doi.org/10.1007/s10637-012-9888-5
  • Wang SA, Li HY, Hsu TI, Chen SH, Wu CJ, Chang WC, Hung JJ. Heat shock protein 90 stabilizes nucleolin to increase mRNA stability in mitosis. J Biol Chem 2011; 286:43816-29; PMID:21998300; http://dx.doi.org/10.1074/jbc.M111.310979
  • Vaughan CK, Gohlke U, Sobott F, Good VM, Ali MM, Prodromou C, Robinson CV, Saibil HR, Pearl LH. Structure of an Hsp90-Cdc37-Cdk4 complex. Mol Cell 2006; 23:697-707; PMID:16949366; http://dx.doi.org/10.1016/j.molcel.2006.07.016
  • Oh JH, Kwon TK. Withaferin A inhibits tumor necrosis factor-α-induced expression of cell adhesion molecules by inactivation of Akt and NF-kappaB in human pulmonary epithelial cells. Intl Immunopharmacol 2009; 9:614-9; PMID:19236958; http://dx.doi.org/10.1016/j.intimp.2009.02.002
  • Heyninck K, Lahtela-Kakkonen M, Van der Veken P, Haegeman G, Vanden Berghe W. Withaferin A inhibits NF-kappaB activation by targeting cysteine 179 in IKKbeta. Biochem Pharmacol 2014; 91:501-9; PMID:25159986; http://dx.doi.org/10.1016/j.bcp.2014.08.004
  • Jackson SS, Oberley C, Hooper CP, Grindle K, Wuerzberger-Davis S, Wolff J, McCool K, Rui L, Miyamoto S. Withaferin A disrupts ubiquitin-based NEMO reorganization induced by canonical NF-kappaB signaling. Exp Cell Res 2015; 331:58-72; PMID:25304104; http://dx.doi.org/10.1016/j.yexcr.2014.09.034
  • Oh JH, Lee TJ, Kim SH, Choi YH, Lee SH, Lee JM, Kim YH, Park JW, Kwon TK. Induction of apoptosis by withaferin A in human leukemia U937 cells through down-regulation of Akt phosphorylation. Apoptosis 2008; 13:1494-504; PMID:19002588; http://dx.doi.org/10.1007/s10495-008-0273-y
  • Dias S, Shmelkov SV, Lam G, Rafii S. VEGF(165) promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood 2002; 99:2532-40; PMID:11895790; http://dx.doi.org/10.1182/blood.V99.7.2532
  • Iqbal J, Sanger WG, Horsman DE, Rosenwald A, Pickering DL, Dave B, Dave S, Xiao L, Cao K, Zhu Q, et al. BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. Am J Pathol 2004; 165:159-66; PMID:15215171; http://dx.doi.org/10.1016/S0002-9440(10)63284-1
  • Chaudhry P, Singh M, Parent S, Asselin E. Prostate apoptosis response 4 (Par-4), a novel substrate of caspase-3 during apoptosis activation. Mol Cell Biol 2012; 32:826-39; PMID:22184067; http://dx.doi.org/10.1128/MCB.06321-11
  • Burikhanov R, Sviripa VM, Hebbar N, Zhang W, Layton WJ, Hamza A, Zhan CG, Watt DS, Liu C, Rangnekar VM. Arylquins target vimentin to trigger Par-4 secretion for tumor cell apoptosis. Nat Chem Biol 2014; 10:924-6; PMID:25218743; http://dx.doi.org/10.1038/nchembio.1631
  • Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 2002; 277:39858-66; PMID:12176997; http://dx.doi.org/10.1074/jbc.M206322200
  • Sato S, Fujita N, Tsuruo T. Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci U S A 2000; 97:10832-7; PMID:10995457; http://dx.doi.org/10.1073/pnas.170276797
  • LoPiccolo J, Granville CA, Gills JJ, Dennis PA. Targeting Akt in cancer therapy. Anti-Cancer Drugs 2007; 18:861-74; PMID:17667591
  • LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resistance Updates 2008; 11:32-50; PMID:18166498; http://dx.doi.org/10.1016/j.drup.2007.11.003
  • Trentin L, Frasson M, Donella-Deana A, Frezzato F, Pagano MA, Tibaldi E, Gattazzo C, Zambello R, Semenzato G, Brunati AM. Geldanamycin-induced Lyn dissociation from aberrant Hsp90-stabilized cytosolic complex is an early event in apoptotic mechanisms in B-chronic lymphocytic leukemia. Blood 2008; 112:4665-74; PMID:18768392; http://dx.doi.org/10.1182/blood-2008-02-139139
  • Moulick K, Ahn JH, Zong H, Rodina A, Cerchietti L, Gomes DaGama EM, Caldas-Lopes E, Beebe K, Perna F, Hatzi K, et al. Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 2011; 7:818-26; PMID:21946277; http://dx.doi.org/10.1038/nchembio.670
  • Castro JE, Prada CE, Loria O, Kamal A, Chen L, Burrows FJ, Kipps TJ. ZAP-70 is a novel conditional heat shock protein 90 (Hsp90) client: inhibition of Hsp90 leads to ZAP-70 degradation, apoptosis, and impaired signaling in chronic lymphocytic leukemia. Blood 2005; 106:2506-12; PMID:15972449; http://dx.doi.org/10.1182/blood-2005-03-1099
  • Gururajan M, Chui R, Karuppannan AK, Ke J, Jennings CD, Bondada S. c-Jun N-terminal kinase (JNK) is required for survival and proliferation of B-lymphoma cells. Blood 2005; 106:1382-91; PMID:15890690; http://dx.doi.org/10.1182/blood-2004-10-3819
  • Edinger M, Cao YA, Verneris MR, Bachmann MH, Contag CH, Negrin RS. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood 2003; 101:640-8; PMID:12393519; http://dx.doi.org/10.1182/blood-2002-06-1751
  • Plumb JA. Cell sensitivity assays: the MTT assay. Method Mol Med 2004; 88:165-9; PMID:14634227
  • Fong MY, Jin S, Rane M, Singh RK, Gupta R, Kakar SS. Withaferin A synergizes the therapeutic effect of doxorubicin through ROS-mediated autophagy in ovarian cancer. PloS one 2012; 7:e42265; PMID:22860102; http://dx.doi.org/10.1371/journal.pone.0042265

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.