4,390
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

Discovery of a novel DNA polymerase inhibitor and characterization of its antiproliferative properties

, , , , , ORCID Icon & ORCID Icon show all
Pages 474-486 | Received 13 Sep 2018, Accepted 22 Sep 2018, Published online: 14 Nov 2018

References

  • Karran P. Mechanisms of tolerance to DNA damaging therapeutic drugs. Carcinogenesis. 2001;22:1931–1937.
  • Wilson PM, Danenberg PV, Johnston PG, Lenz HJ, Ladner RD. 2014. Standing the test of time: targeting thymidylate biosynthesis in cancer therapy. Nat Reviews Clin Oncology. 11:282–298. doi:10.1038/nrclinonc.2014.51.
  • Cheung-Ong K, Giaever G, Nislow C. 2013. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol. 20:648–659. doi:10.1016/j.chembiol.2013.04.007.
  • Tiwari M. 2012. Antimetabolites: established cancer therapy. J Cancer Res Ther. 8:510–519. doi:10.4103/0973-1482.106526.
  • Hagner N, Joerger M. 2010. Cancer chemotherapy: targeting folic acid synthesis. Cancer Manag Res. 2:293–301. doi:10.2147/CMR.S10043.
  • Shao J, Liu X, Zhu L, Yen Y. 2013. Targeting ribonucleotide reductase for cancer therapy. Expert Opin Ther Targets. 17:1423–1437. doi:10.1517/14728222.2013.840293.
  • Delgado JL, Hsieh C-M, Chan N-L, Hiasa H. 2018. Topoisomerases as anticancer targets. Biochem J. 475:373–398. doi:10.1042/BCJ20160583.
  • Nitiss JL. DNA topoisomerases in cancer chemotherapy: using enzymes to generate selective DNA damage. Current Opinion Investigational Drugs (London, England: 2000). 2002;3:1512–1516.
  • Nitiss JL. 2009. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Reviews Canc. 9:338–350. doi:10.1038/nrc2607.
  • Collins I, Weber A, Levens D. 2001. Transcriptional consequences of topoisomerase inhibition. Mol Cell Biol. 21:8437–8451. doi:10.1128/MCB.21.24.8437-8451.2001.
  • Pommier Y. 2013. Drugging topoisomerases: lessons and challenges. ACS Chem Biol. 8:82–95. doi:10.1021/cb300648v.
  • Doublie S, Zahn KE. 2014. Structural insights into eukaryotic DNA replication. Front Microbiol. 5:444. doi:10.3389/fmicb.2014.00547.
  • Zhang D, O’Donnell M. 2016. The eukaryotic replication machine. Enzym. 39:191–229. doi:10.1016/bs.enz.2016.03.004.
  • Johansson E, Macneill SA. 2010. The eukaryotic replicative DNA polymerases take shape. Trends Biochem Sci. 35:339–347. doi:10.1016/j.tibs.2010.01.004.
  • Irwin JJ Using ZINC to acquire a virtual screening library. Current protocols in bioinformatics/editoral board, Andreas D Baxevanis [et al] 2008; Chapter 14:Unit 14 6.
  • Zhang P, Frugulhetti I, Jiang Y, Holt GL, Condit RC, Lee MY. Expression of the catalytic subunit of human DNA polymerase delta in mammalian cells using a vaccinia virus vector system. J Biol Chem. 1995;270:7993–7998.
  • Meng X, Zhou Y, Lee EYC, Lee MYWT, Frick DN. 2010. The p12 subunit of human polymerase delta modulates the rate and fidelity of DNA synthesis. Biochemistry. 49:3545–3554. doi:10.1021/bi100042b.
  • Meng X, Zhou Y, Zhang S, Lee EY, Frick DN, Lee MY. 2009. DNA damage alters DNA polymerase delta to a form that exhibits increased discrimination against modified template bases and mismatched primers. Nucleic Acids Res. 37:647–657. doi:10.1093/nar/gkn1000.
  • Lee M, Wang X, Zhang S, Zhang Z, Lee EYC. Regulation and modulation of human DNA polymerase delta activity and function. Genes. 2017;8(7):190.
  • Wu P, Nielsen TE, Clausen MH. 2015. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci. 36:422–439. doi:10.1016/j.tips.2015.04.005.
  • Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, Scott CL, Meier W, Shapira-Frommer R, Safra T, et al. 2014. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol. 15:852–861. doi:10.1016/S1470-2045(14)70228-1.
  • George Paul A, Sharma-Walia N, Kerur N, White C, Chandran B. 2010. Piracy of prostaglandin E2/EP receptor-mediated signaling by Kaposi’s sarcoma-associated herpes virus (HHV-8) for latency gene expression: strategy of a successful pathogen. Cancer Res. 70:3697–3708. doi:10.1158/0008-5472.CAN-09-3934.
  • Salic A, Mitchison TJ. 2008. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A. 105:2415–2420. doi:10.1073/pnas.0712168105.
  • Buck SB, Bradford J, Gee KR, Agnew BJ, Clarke ST, Salic A. 2008. Detection of S-phase cell cycle progression using 5-ethynyl-2’-deoxyuridine incorporation with click chemistry, an alternative to using 5-bromo-2’-deoxyuridine antibodies. Biotechniques. 44:927–929. doi:10.2144/000112812.
  • Schwab RA, Niedzwiedz W. Visualization of DNA replication in the vertebrate model system DT40 using the DNA fiber technique. J Visualized Experiments: JoVE. 2011;56:e3255.
  • Twentyman PR, Luscombe M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer. 1987;56:279–285.
  • Wong SJ, Myette MS, Wereley JP, Chitambar CR. Increased sensitivity of hydroxyurea-resistant leukemic cells to gemcitabine. Clinil Cancer Res. 1999;5:439–443.
  • Kuriyama I, Mizuno T, Fukudome K, Kuramochi K, Tsubaki K, Usui T, Imamoto N, Sakaguchi K, Sugawara F, Yoshida H, et al. 2008. Effect of dehydroaltenusin-C12 derivative, a selective DNA polymerase alpha inhibitor, on DNA replication in cultured cells. Molecules. 13:2948–2961. doi:10.3390/molecules13122948.
  • McBurney MW, Whitmore GF. Mechanism of growth inhibition by methotrexate. Cancer Res. 1975;35:586–590.
  • Mitchell EP. Oxaliplatin with 5-FU or as a single agent in advanced/metastatic colorectal cancer. Oncology (Williston Park, NY). 2000;14:30–32.
  • Brennan MJ, Vaitkevicius VK. 5-Fluorouracil in clinical cancer experience with 155 patients. Cancer Chem Rep. 1960;6:8–11.
  • Gold GL, Hall TC, Shnider BJ, Selawry O, Colsky J, Owens AH, Jr., Dederick MM, Holland JF,Brindley CO, Jones R. A clinical study of 5-fluorouracil. Cancer Res. 1959;19:935–939.
  • Maloisel L, Fabre F, Gangloff S. 2008. DNA polymerase delta is preferentially recruited during homologous recombination to promote heteroduplex DNA extension. Mol Cell Biol. 28:1373–1382. doi:10.1128/MCB.01651-07.
  • Nakanishi K, Cavallo F, Brunet E, Jasin M. 2011. Homologous recombination assay for interstrand cross-link repair. Methods Mol Biol. 745:283–291. doi:10.1007/978-1-61779-129-1_16.
  • Weinstock DM, Nakanishi K, Helgadottir HR, Jasin M. 2006. Assaying double-strand break repair pathway choice in mammalian cells using a targeted endonuclease or the RAG recombinase. Methods Enzymol. 409:524–540. doi:10.1016/S0076-6879(05)09031-2.
  • Ahrabi S, Sarkar S, Pfister SX, Pirovano G, Higgins GS, Porter ACG, Humphrey TC. 2016. A role for human homologous recombination factors in suppressing microhomology-mediated end joining. Nucleic Acids Res. 44:5743–5757. doi:10.1093/nar/gkw326.
  • De Picciotto N, Cacheux W, Roth A, Chappuis PO, Labidi-Galy SI. 2016. Ovarian cancer: status of homologous recombination pathway as a predictor of drug response. Crit Rev Oncol Hematol. 101:50–59. doi:10.1016/j.critrevonc.2016.02.014.
  • Kim G, Ison G, McKee AE, Zhang H, Tang S, Gwise T, Sridhara R, Lee E, Tzou A, Philip R, et al. 2015. FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clinil Cancer Res. 21:4257–4261. doi:10.1158/1078-0432.CCR-15-0887.
  • Meehan RS, Chen AP. 2016. New treatment option for ovarian cancer: PARP inhibitors. Gynecologic Onc Res Practice. 3:3. doi:10.1186/s40661-016-0024-7.
  • Moore DC, Ringley JT, Patel J. Rucaparib: A Poly(ADP-Ribose) polymerase inhibitor for BRCA-mutated relapsed ovarian cancer. J Pharm Pract. 2017;30:897190017743131.
  • Taylor KN, Eskander RN. 2017. PARP inhibitors in epithelial ovarian cancer. Recent Pat Anticancer Drug Discov. 2018;13:145–158.
  • Scott LJ. 2017. Niraparib: first global approval. Drugs. 77:1029–1034. doi:10.1007/s40265-017-0752-y.
  • Syed YY. 2017. Rucaparib: first global approval. Drugs. 77:585–592. doi:10.1007/s40265-017-0716-2.
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.
  • Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell. 144:646–674. doi:10.1016/j.cell.2011.02.013.
  • Arora A, Scholar EM. 2005. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther. 315:971–979. doi:10.1124/jpet.105.084145.
  • Gotink KJ, Verheul HMW. 2010. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis. 13:1–14. doi:10.1007/s10456-009-9160-6.
  • Todd RC, Lippard SJ. 2009. Inhibition of transcription by platinum antitumor compounds. Metallomics: Integrated Biometal Science. 1:280–291. doi:10.1039/b907567d.
  • Sonohara Y, Iwai S, Kuraoka I. 2015. An in vitro method for detecting genetic toxicity based on inhibition of RNA synthesis by DNA lesions. Genes env. 37:8. doi:10.1186/s41021-015-0014-8.
  • Ward J, Kapadia K, Brush E, Salhanick SD. 2013. Amatoxin poisoning: case reports and review of current therapies. J Emerg Med. 44:116–121. doi:10.1016/j.jemermed.2012.02.020.
  • Allen B, Desai B, Lisenbee N. 2012. Amatoxin: A Review. ISRN Emerg Med. 2012:1–4. doi:10.5402/2012/190869.
  • Boussios S, Pentheroudakis G, Katsanos K, Pavlidis N. Systemic treatment-induced gastrointestinal toxicity: incidence, clinical presentation and management. Ann gastroenterology. 2012;25:106–118.
  • Damia G, Tagliabue G, Zucchetti M, Davoli E, Sessa C, Cavalli F, D’Incalci M. Activity of aphidicolin glycinate alone or in combination with cisplatin in a murine ovarian tumor resistant to cisplatin. Cancer Chemother Pharmacol. 1992;30:459–464.
  • Moreland NJ, Illand M, Kim YT, Paul J, Brown R. Modulation of drug resistance mediated by loss of mismatch repair by the DNA polymerase inhibitor aphidicolin. Cancer Res. 1999;59:2102–2106.
  • O’Dwyer PJ, Moyer JD, Suffness M, Harrison SD Jr., Cysyk R, Hamilton TC, Plowman J. Antitumor activity and biochemical effects of aphidicolin glycinate (NSC 303812) alone and in combination with cisplatin in vivo. Cancer Res. 1994;54:724–729.
  • Sargent JM, Elgie AW, Williamson CJ, Taylor CG. Aphidicolin markedly increases the platinum sensitivity of cells from primary ovarian tumours. Br J Cancer. 1996;74:1730–1733.
  • Sessa C, Zucchetti M, Davoli E, Califano R, Cavalli F, Frustaci S, Gumbrell L, Sulkes A, Winograd B, D’Incalci M. Phase I and clinical pharmacological evaluation of aphidicolin glycinate. J Natl Cancer Inst. 1991;83:1160–1164.
  • Leeds JM, Mathews CK. Cell cycle-dependent effects on deoxyribonucleotide and DNA labeling by nucleoside precursors in mammalian cells. Mol Cell Biol. 1987;7:532–534.
  • Leeds JM, Slabaugh MB, Mathews CK. DNA precursor pools and ribonucleotide reductase activity: distribution between the nucleus and cytoplasm of mammalian cells. Mol Cell Biol. 1985;5:3443–3450.
  • Momparler RL. Biochemical pharmacology of cytosine arabinoside. Med Pediatr Oncol. 1982;10(Suppl 1):45–48.
  • Perrino FW, Mekosh HL. Incorporation of cytosine arabinoside monophosphate into DNA at internucleotide linkages by human DNA polymerase alpha. J Biol Chem. 1992;267:23043–23051.
  • Dietlein F, Thelen L, Reinhardt HC. 2014. Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches. Trends in Genetics: TIG. 30:326–339. doi:10.1016/j.tig.2014.06.003.
  • Prakash R, Zhang Y, Feng W, Jasin M. 2015. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol. 7:a016600. doi:10.1101/cshperspect.a016600.
  • Eshleman JR, Markowitz SD. Mismatch repair defects in human carcinogenesis. Hum Mol Genet. 1996;5 :1489-1494.
  • Boland CR, Goel A. 2010. Microsatellite instability in colorectal cancer. Gastroenterology. 138:2073–87 e3. doi:10.1053/j.gastro.2009.12.064.
  • Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D’Andrea AD. 2015. Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov. 5:1137–1154. doi:10.1158/2159-8290.CD-15-0714.
  • Caruso D, Papa A, Tomao S, Vici P, Panici PB, Tomao F. 2017. Niraparib in ovarian cancer: results to date and clinical potential. Ther Adv Med Oncol. 9:579–588. doi:10.1177/1758834017718775.
  • Chang L, Chang M, Chang HM, Chang F. Microsatellite instability: a predictive biomarker for cancer immunotherapy. Applied Imm Chem Mol Morphology: AIMM. 2018;26:e15–e21.
  • First tissue-agnostic drug approval issued. Cancer Discov. 2017;7:656.
  • McVey M, Khodaverdian VY, Meyer D, Cerqueira PG, Heyer W-D. 2016. Eukaryotic DNA Polymerases in homologous recombination. Annu Rev Genet. 50:393–421. doi:10.1146/annurev-genet-120215-035243.
  • Longley MJ, Pierce AJ, Modrich P. DNA polymerase delta is required for human mismatch repair in vitro. J Biol Chem. 1997;272:10917–10921.
  • Swan MK, Johnson RE, Prakash L, Prakash S, Aggarwal AK. 2009. Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase delta. Nat Struct Mol Biol. 16:979–986. doi:10.1038/nsmb.1663.
  • Guex N, Peitsch MC. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 18:2714–2723. doi:10.1002/elps.1150181505.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.
  • Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, Case DA, Kuntz ID, Rizzo RC. 2015. DOCK 6: impact of new features and current docking performance. J Comput Chem. 36:1132–1156. doi:10.1002/jcc.23905.
  • Mezencev R, Matyunina LV, Wagner GT, McDonald JF. 2016. Acquired resistance of pancreatic cancer cells to cisplatin is multifactorial with cell context-dependent involvement of resistance genes. Cancer Gene Ther. 23:446–453. doi:10.1038/cgt.2016.71.
  • Coley HM. Development of drug-resistant models. Methods Mol Med. 2004;88:267–273.