2,171
Views
8
CrossRef citations to date
0
Altmetric
Review

The role of extracellular DNA (exDNA) in cellular processes

, , , , &
Pages 267-278 | Received 26 May 2020, Accepted 07 Feb 2021, Published online: 16 Apr 2021

References

  • Mandel P, Métais P. Les acides nucléiques du plasma sanguin chez l’homme [The nucleic acids of blood plasma in humans]. C R Seances Soc Biol Fil. 1948;142(3–4):241–243.
  • Aarthy R, Mani S, Velusami S, Sundarsingh S, Rajkumar T. 2015. Role of circulating cell-free DNA in cancers. Mol Diagn Ther. 19(6):339–350. 10.1007/s40291-015-0167-y.
  • Gahan PB, Anker P, Stroun SM. 2008. Metabolic DNA as the origin of spontaneously released DNA?. Ann NY Acad Sci. 1137(1):7–17. 10.1196/annals.1448.046.
  • Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M. 2016. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 35(3):347–376. 10.1007/s10555-016-9629-x.
  • Zukowski A, Rao S, Ramachandran S. 2020. Phenotypes from cell-free DNA. Phenotypes from cell-free DNA. Open Biol. 10(9):200119. 10.1098/rsob.200119.
  • Rykova E, Morozkin E, Ponomaryova A, Loseva E, Zaporozhchenko I, Cherdyntseva N, Vlassov V, Laktionov P. 2012. Cell-free and cell-bound circulating nucleic acid complexes: mechanisms of generation, concentration and content. Expert Opin Biol Ther. 12(Suppl sup1):S141–S153. 10.1517/14712598.2012.673577.
  • Marzban C, Viswanathan R, Yurtsever U. 2014. Earth before life. Biol Direct. 9(11):1–11. 10.1186/1745-6150-9-1.
  • Zhang W, Xia W, Lv Z, Ni C, Xin Y, Yang L. 2017. Liquid biopsy for cancer: circulating tumor cells, circulating free DNA or exosomes?. Cell Physiol Biochem. 41(2):755–768. 10.1159/000458736.
  • Lichtenstein A, Melkonyan H, Tomei LD, Umansky SR. Circulating nucleic acids and apoptosis. Ann NY Acad Sci. 2006;945(1):239–249. doi:10.1111/j.1749-6632.2001.tb03892.x. tb03892.x.
  • Stroun M, Lyautey J, Olson-Sand A, Anker P. 2001. About the possible origin and mechanism of circulating DNA. Apoptosis and active DNA release. Clin Chim Acta. 313(1–2):139–142. 10.1016/s0009-8981(01)00665-9.
  • Ulivi P, Silvestrini R. 2013. Role of quantitative and qualitative characteristics of free circulating DNA in the management of patients with non-small cell lung cancer. Cell Oncol. 36(6):439–448. 10.1007/s13402-013-0155-3.
  • Bryzgunova OE, Laktionov PP. 2014. Generation of blood circulating DNAs: sources, features of structure and circulation. Biochemistry (Moscow) Supplement Series B: Biomed Chem. 8(3):203–219. 10.1134/S1990750814030020.
  • Aucamp J, Bronkhorst AJ, Badenhorst CPS, Pretorius PJ. 2018. The diverse origins of circulating cell-free DNA in the human body: a critical re-evaluation of the literature. Biol Rev Camb Philos Soc. 93(3):1649, 168. 10.1111/brv.12413.
  • Bronkhorst AJ, Wentzel JF, Aucamp J, Van Dyk E, Du Plessis L, Pretorius PJ. 2016. Characterization of the cell-free DNA released by cultured cancer cells. Biochim Biophys Acta. 1863(1):157–165. 10.1016/j.bbamcr.2015.10.022.
  • Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;614:1659–1665. PMID: 11245480.
  • Pös O, Biró O, Szemes T, Nagy B. 2018. Circulating cell-free nucleic acids: characteristics and applications. Eur J Hum Genet. 26(7):937–945. 10.1038/s41431-018-0132-4.
  • Lam WKJ, Gai W, Sun K, Wong RSM, Chan RWY, Jiang P, Chan NPH, Hui WWI, Chan AWH, ChCh S, et al. 2017. DNA of erythroid origin is present in human plasma and informs the types of anemia. Clin Chem. 63:1614–1623. 10.1373/clinchem.2017.272401.
  • Sato Y, Matoba R, Kato K. 2019. Recent advances in liquid biopsy in precision oncology research. Biol Pharm Bull. 42(3):337–342. 10.1248/bpb.b18-00804.
  • Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, Thornton K, Agrawal N, Sokoll L, Szabo SA, et al. 2008. Circulating mutant DNA to assess tumor dynamics. Nat Med. 14(9):985–990. DOI:10.1038/nm.1789
  • Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Ther. 2019;20(8):1057–1067. doi:10.1080/15384047.2019. 1598759.
  • Umetani N, Giuliano AE, Hiramatsu SH, Amersi F, Nakagawa T, Martino S, Hoon DS. 2006. Prediction of breast tumor progression by integrity of free circulating DNA in serum. J Clin Oncol. 24(26):4270–4276. 10.1200/JCO.2006.05.9493.
  • Ludovini V, Pistola L, Gregorc V, Floriani I, Rulli E, Piattoni S, Di Carlo L, Semeraro A, Darwish S, Tofanetti FR, et al. 2008. Plasma DNA, microsatellite alterations, and p53 tumor mutations are associated with disease-free survival in radically resected non-small cell lung cancer patients: a study of the Perugia multidisciplinary team for thoracic oncology. J Thorac Oncol. 3(4):365–373. DOI:10.1097/JTO.0b013e318168c7d0
  • Li L, Hann HW, Wan S, Hann RS, Wang C, Lai Y, Ye X, Evans A, Myers RE, Ye Z, et al. 2016. Cell-free circulating mitochondrial DNA content and risk of hepatocellular carcinoma in patients with chronic HBV infection. Sci Rep. 6(1):23992. DOI:10.1038/srep23992
  • Thierry AR, Mouliere F, Gongora C, Ollier J, Robert B, Ychou M, Del Rio M, Molina F. 2010. Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res. 38(18):6159–6175. 10.1093/nar/gkq421.
  • Duforestel M, Briand J, Bougras-Cartron G, Heymann D, Frenel J-S, Vallette FM, Cartron P-F. 2020. Cell-free circulating epimarks in cancer monitoring. Epigenomics. 12(2):145–155. 10.2217/epi-2019-0170.
  • Fernández-Lázaro D, García Hernández JL, García AC, Córdova Martínez A, Mielgo-Ayuso J, Cruz-Hernández JJ. 2020. Liquid Biopsy as Novel Tool in Precision Medicine: origins, Properties, Identification and Clinical Perspective of Cancer’s Biomarkers. Diagnostics (Basel). 10(4):215. 10.3390/diagnostics10040215.
  • Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. 2020. Molecular profiling for precision cancer therapies. Genome Med. 12(1):8. 10.1186/s13073-019-0703-1.
  • Diaz LA, Bardelli BA. 2014. Liquid Biopsies: genotyping Circulating Tumor DNA. J Clin Oncol. 32(6):579–586. 10.1200/JCO.2012.45.2011.
  • Jensen SØ, Øgaard N, Ørntoft MBW, Rasmussen MH, Bramsen JB, Kristensen H, Mouritzen P, Madsen MR, Madsen AH, Sunesen KG, et al. 2019. Novel DNA methylation biomarkers show high sensitivity and specificity for blood-based detection of colorectal cancer—a clinical biomarker discovery and validation study. Clin Epigenetics. 11(1):158. DOI:10.1186/s13148-019-0757-3
  • Warton K, Mahon KL, Samimi G. 2016. Methylated circulating tumor DNA in blood: power in cancer prognosis and response. Endocr Relat Cancer. 23(3):R157–R171. 10.1530/ERC-15-0369.
  • Campos-Carrillo A, Weitzel JN, Sahoo P, Rockne R, Mokhnatkin JV, Murtaza M, Gray SW, Goetz L, Goel A, Schork N, et al. Circulating tumor DNA as an early cancer detection tool. Pharmacol Ther. 2020; 207(107458). doi:10.1016/j.pharmthera.2019.107458. pharmthera. 2019.107458.
  • Chen Q, Zhang Z-H, Wang S, Lang J-H. 2019. <p>Circulating Cell-Free DNA or Circulating Tumor DNA in the Management of Ovarian and Endometrial Cancer. Onco Targets Ther. 12:11517–11530. 10.2147/OTT.S227156.
  • Zhang Z, Chen P, Xie H, Cao P. 2020. Using circulating tumor DNA as a novel biomarker to screen and diagnose hepatocellular carcinoma: a systematic review and meta-analysis. Cancer Med. 9(4):1349–1364. 10.1002/cam4.2799.
  • Reece M, Saluja H, Hollington P, Karapetis CS, Vatandoust S, Young GP, Symonds EL. 2019. The use of circulating tumor DNA to monitor and predict response to treatment in colorectal cancer. Front Genet. 10(1118):1–25. 10.3389/fgene.2019.01118.
  • Bell E. 1969. I-DNA: its packaging into I-somes and its relation to protein synthesis during differentiation. Nature. 224(5217):326–328. 10.1038/224326a0.
  • Aucamp J, Bronkhorst AJ, Badenhorst CP, Pretorius PJ. 2016. A historical and evolutionary perspective on the biological significance of circulating DNA and extracellular vesicles. Cell Mol Life Sci. 73(23):4355–4381. 10.1007/s00018-016-2370-3.
  • Bell BE. 1971. Informational DNA Synthesis Distinguished from That of Nuclear DNA by Inhibitors of DNA Synthesis. Science. 174(4009):603–606. 10.1126/science.174.4009.603.
  • Cai J, Wu G, Jose PA, Zeng C. 2016. Functional transferred DNA within extracellular vesicles. Exp Cell Res. 349(1):179–183. 10.1016/j.yexcr.2016.10.012.
  • Gahan PB, Stroun M. 2010. The virtosome-a novel cytosolic informative entity and intercellular messenger. Cell Biochem Funct. 28(7):529–538. 10.1002/cbf.1690.
  • Wang W, Kong P, Ma G, Li L, Zhu J, Xia T, Xie H, Zhou W, Wang S. 2017. Characterization of the release and biological significance of cell-free DNA from breast cancer cell lines. Oncotarget. 8(26):43180–43191. 10.18632/oncotarget.17858.
  • Nagler M, Insam H, Pietramellara G, Ascher-Jenull A-J-J. 2018. Extracellular DNA in natural environments: features, relevance and applications. Appl Microbiol Biotechnol. 102(15):6343–6356. 10.1007/s00253-018-9120-4.
  • Otandault A, Anker P, Al Amir DZ, Guillaumon V, Meddeb R, Pastor B, Pisareva E, Sanchez C, Tanos R, Tousch G, et al. 2019. Recent advances in circulating nucleic acids in oncology. Ann Oncol. 30(3):374–384. DOI:10.1093/annonc/mdz031
  • Vanpouille-Box C, Demaria S, Formenti SC, Galluzzi GL. 2018. Cytosolic DNA Sensing in Organismal Tumor Control. Cancer Cell. 34(3):361–378. 10.1016/j.ccell.2018.05.013.
  • Lehmann-Werman R, Neiman D, Zemmour H, Moss J, Magenheim J, Vaknin-Dembinsky A, Rubertsson S, Nellgård B, Blennow K, Zetterberg H, et al. 2016. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci USA. 113(13):E1826–E1834. DOI:10.1073/pnas.1519286113
  • Skvortsova TE, Rykova EY, Tamkovich SN, Bryzgunova OE, Starikov AV, Kuznetsova NP, Vlassov VV, Laktionov PP. 2006. Cell-free and cell-bound circulating DNA in breast tumours: DNA quantification and analysis of tumour-related gene methylation. Br J Cancer. 94(10):1492–1495. 10.1038/sj.bjc.6603117.
  • Veĭko NN, Bulycheva NV, Roginko OA, Veĭko RV, Ershova ES, Kozdoba OA, Kuz’min VA, Vinogradov AM, Iudin AA, Speranskiĭ AI. 2008. [Ribosomal repeat in the cell free DNA as a marker for cell death]. Biomed Khim. 54(1):78–93. 10.1134/S1990750808020121.
  • Chen Z, Fadiel A, Naftolin F, Eichenbaum KD, Xia XY. 2005. Circulation DNA: biological implications for cancer metastasis and immunology. Med Hypotheses. 65(5):956–961. 10.1016/j.mehy.2005.04.042.
  • Kozhina EA, Ershova ES, Okorokova NA, Veiko VP, Malinovskaya EM, Sergeeva VA, Konkova MS, Kutsev SI, Veiko NN, Kostyuk SV. 2019. Extracellular DNA Containing (dG)n Motifs Penetrates into MCF7 Breast Cancer Cells, Induces the Adaptive Response, and Can Be Expressed. Oxid Med Cell Longev. 2019:7853492. 10.1155/2019/7853492.
  • Unterholzner L. 2013. The interferon response to intracellular DNA: why so many receptors?. Immunobiology. 218(11):1312–1321. 10.1016/j.imbio.2013.07.007.
  • Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637–650. doi:10.1016/j.immuni.2011.05.006. 05.006.
  • Harberts E, Gaspari AA. 2013. TLR signaling and DNA repair: are they associated?. J Invest Dermatol. 133(2):296–302. 10.1038/jid.2012.288.
  • Kato H, Takahasi K, Fujita T. 2011. RIG-I-like receptors: cytoplasmic sensors for non-self RNA. Immunol Rev. 243(1):91–98. 10.1111/j.1600-065X.2011.01052.x.
  • Keating SE, Baran M, Bowie AG. 2011. Cytosolic DNA sensors regulating type I interferon induction. Trends Immunol. 32(12):574–581. 10.1016/j.it.2011.08.004.
  • Sun L, Wu J, Du F, Chen X, Chen ZJ. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 339(6121):786–791. 10.1126/science.1232458.
  • Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 339(6121):826–830. 10.1126/science.1229963.
  • Kalluri R, LeBleu VS. 2016. Discovery of double-stranded genomic DNA in circulating exosomes. Cold Spring Harbor Symposia on Quantitative Biology. 81:275–280. 10.1101/sqb.2016.81.030932.
  • Gonda A, Kabagwira J, Senthil GN, Wall NR. 2019. Internalization of exosomes through receptor-mediated endocytosis. Mol Cancer Res. 17(2):337–347. 10.1158/1541-7786.MCR-18-0891.
  • Kostyuk SV, Porokhovnik LN, Ershova ES, Malinovskaya EM, Konkova MS, Kameneva LV, Dolgikh OA, Veiko VP, Pisarev VM, Martynov AV, et al. Changes of KEAP1/NRF2 and IKB/NF-κB expression levels induced by cell-free DNA in different cell types. Oxid Med Cell Longev. 2018;1052413. doi:10.1155/2018/1052413.
  • Kostyuk SV, Konkova MS, Ershova ES, Alekseeva AJ, Smirnova TD, Stukalov SV, Kozhina EA, Shilova NV, Zolotukhina TV, Markova ZG, et al. 2013. An exposure to the oxidized DNA enhances both instability of genome and survival in cancer cells. PLoS One. 8(10):e77469. DOI:10.1371/journal.pone.0077469
  • Kostyuk SV, Alekseeva AY, Kon’kova MS, Glebova KV, Smirnova TD, Kameneva LV, Izhevskaya VL, Veiko NN. 2014. Oxidized extracellular DNA suppresses nitric oxide production by endothelial NO synthase (eNOS) in human endothelial cells (HUVEC). Bull Exp Biol Med. 157(2):202–206. 10.1007/s10517-014-2525-x.
  • Loseva P, Kostyuk S, Malinovskaya E, Clement N, Dechesne CA, Dani C, Smirnova T, Glebova K, Baidakova G, Baranova A, et al. 2012. Extracellular DNA oxidation stimulates activation of NRF2 and reduces the production of ROS in human mesenchymal stem cells. Expert Opin Biol Ther. 12(1):S85–S97. DOI:10.1517/14712598.2012.688948
  • Konkova MS, Kaliyanov AA, Sergeeva VA, Abramova MS, Kostyuk SV. 2019. Oxidized cell-free DNA is a factor of stress signaling in radiation-induced bystander effects in different types of human cells. International Journal of Genomics. 2019:9467029. 10.1155/2019/9467029.
  • Valavanidis A, Vlachogianni T, Fiotakis C. 2009. 8-hydroxy-2′ -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. Journal of Environmental Science and Health, Part C. 27(2):120–139. 10.1080/10590500902885684.
  • Roszkowski K, Jozwicki W, Blaszczyk P, Mucha-Malecka A, Siomek A. 2011. Oxidative damage DNA: 8-oxoGua and 8-oxodG as molecular markers of cancer. Med Sci Monit. 17(6):CR329–CR333. 10.12659/msm.881805.
  • Sergeeva VA, Ershova ES, Veiko NN, Malinovskaya EM, Kalyanov AA, Kameneva LV, Stukalov SV, Dolgikh OA, Konkova MS, Ermakov AV, et al. 2017. Low-dose ionizing radiation affects mesenchymal stem cells via extracellular oxidized cell-free DNA: a possible mediator of bystander effect and adaptive response. Oxid Med Cell Longev. 2017:9515809. 10.1155/2017/9515809.
  • Ermakov AV, Konkova MS, Kostyuk SV, Izevskaya VL, Baranova A, Veiko NN. 2013. Oxidized extracellular DNA as a stress signal in human cells. Oxid Med Cell Longev. 2013:649747. 10.1155/2013/649747.
  • Glebova K, Veiko N, Kostyuk S, Izhevskaya V, Baranova A. 2015. Oxidized extracellular DNA as a stress signal that may modify response to anticancer therapy. Cancer Lett. 356(1):22–33. 10.1016/j.canlet.2013.09.005.
  • Guiducci C, Coffman RL, Barrat FJ. 2009. Signalling pathways leading to IFN-α production in human plasmacytoid dendritic cell and the possible use of agonists or antagonists of TLR7 and TLR9 in clinical indications. J Intern Med. 265(1):43–57. 10.1111/j.1365-2796.2008.02050.x.
  • Nathan C. 2006. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 6(3):173–182. 10.1038/nri1785.
  • Papayannopoulos V, Zychlinsky A. 2009. NETs: a new strategy for using old weapons. Trends Immunol. 30(11):513–521. doi:10.1016/j.it.2009.07.011.
  • Kaplan MJ, Radic M. 2012. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 189(6):2689–2695. 10.4049/jimmunol.1201719.
  • Liaw PC, Ito T, Iba T, Thachil J, Zeerleder ZS. 2016. DAMP and DIC: the role of extracellular DNA and DNA-binding proteins in the pathogenesis of DIC. Blood Rev. 30(4):257–261. 10.1016/j.blre.2015.12.004.
  • Yousefi S, Simon D, Stojkov D, Karsonova A, Karaulov A, Simon H-U In vivo evidence for extracellular DNA trap formation. Cell Death Dis. 2020;11(4):300. Published 2020 Apr 30. doi:10.1038/s41419-020-2497-x.
  • Daniel C, Leppkes M, Muñoz LE, Schley G, Schett G, Extracellular HM. 2019. DNA traps in inflammation, injury and healing. Nat Rev Nephrol. 15(9):559–575. 10.1038/s41581-019-0163-2.
  • Lou H, Pickering MC. 2018. Extracellular DNA and autoimmune diseases. Cell Mol Immunol. 15(8):746–755. 10.1038/cmi.2017.136.
  • Tadie J-M, Bae H-B, Jiang S, Park DW, Bell CP, Yang H, Pittet J-F, Tracey K, Thannickal VJ, Abraham E, et al. 2013. HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4. Am J Physiol Lung Cell Mol Physiol. 304(5):L342–9. DOI:10.1152/ajplung.00151.2012
  • Neeli I, Dwivedi N, Khan S, Radic M. 2009. Regulation of extracellular chromatin release from neutrophils. J Innate Immun. 1(3):194–201. 10.1159/000206974.
  • Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA, et al. 2009. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 184(2):205–213. DOI:10.1083/jcb.200806072
  • Brinkmann V, Zychlinsky A. 2012. Neutrophil extracellular traps: is immunity the second function of chromatin?. J Cell Biol. 198(5):773–783. 10.1083/jcb.201203170.
  • Miller BF, Abrams R, Dorfman A, Klein M. 1942. Antibacterial properties of protamine and histone. Science. 96(2497):428–430. 10.1126/science.96.2497.428.
  • Hirsch JG. 1958. Bactericidal action of histone. J Exp Med. 108(6):925–944. 10.1084/jem.108.6.925.
  • Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, Brinkmann V, Jungblut PR, Zychlinsky A, Levitz SM. 2009. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 5(10):e1000639. 10.1371/journal.ppat.1000639.
  • Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, Lohmeyer J, Preissner KT, Hartl D. 2012. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One. 7(2):e32366. 10.1371/journal.pone.0032366.
  • Kawasaki H, Koyama T, Conlon JM, Yamakura F, Iwamuro S. 2008. Antimicrobial action of histone H2B in Escherichia coli: evidence for membrane translocation and DNA-binding of a histone H2B fragment after proteolytic cleavage by outer membrane proteinase T. Biochimie. 90(11–12):1693–1702. 10.1016/j.biochi.2008.07.003.
  • Lemaire S, Trinh -T-T, Le H-T, Tang S-C, Hincke M, Wellman-Labadie O, Ziai S. 2008. Antimicrobial effects of H4-(86-100), histogranin and related compounds - possible involvement of DNA gyrase. Febs J. 275(21):5286–5297. 10.1111/j.1742-4658.2008.06659.x.
  • Gupta AK, Joshi MB, Philippova M, Erne P, Hasler P, Hahn S, Resink TJ. 2010. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett. 584(14):3193–3197. 10.1016/j.febslet.2010.06.006.
  • Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, Taylor FB, Esmon NL, Lupu F, Esmon CT. 2009. Extracellular histones are major mediators of death in sepsis. Nat Med. 15(11):1318–1321. 10.1038/nm.2053.
  • Pisetsky DS. 2012. The origin and properties of extracellular DNA: from PAMP to DAMP. Clin Immunol. 144(1):32–40. 10.1016/j.clim.2012.04.006.
  • Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang Y-H, Homey B, Cao W, Wang Y-H, Su B, Nestle FO, et al. 2007. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 449(7162):564–569. DOI:10.1038/nature06116
  • Poli C, Augusto JF, Dauvé J, Adam C, Preisser L, Larochette V, Pignon P, Savina A, Blanchard S, Subra JF, et al. 2017. IL-26 confers proinflammatory properties to extracellular DNA. J Immunol. 198(9):3650–3661. DOI:10.4049/jimmunol.1600594
  • Hawes MC, Curlango-Rivera G, Wen F, White GJ, Vanetten HD, Xiong XZ. 2011. Extracellular DNA: the tip of root defenses?. Plant Sci. 180(6):741–745. 10.1016/j.plantsci.2011.02.007.
  • Wen F, White GJ, VanEtten HD, Xiong Z, Hawes MC. 2009. Extracellular DNA is required for root tip resistance to fungal infection. Plant Physiol. 151(2):820–829. 10.1104/pp.109.142067.
  • Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, Poindexter ME, Upadhyay P, Uyeminami DL, Pommier A, Küttner V, et al. 2018. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 361(eaao4227):1–13. DOI:10.1126/science.aao4227
  • Aguirre-Ghiso JA. 2018. How dormant cancer persists and reawakens. Science. 361(6409):1315. 10.1126/science.aav0191.
  • Zeerleder S, Zwart B, Te Velthuis H, Stephan F, Manoe R, Rensink I, Aarden LA. 2008. Nucleosome-releasing factor: a new role for factor VII-activating protease (FSAP). Faseb J. 22(12):4077–4084. 10.1096/fj.08-110429.
  • Stephan F, Hazelzet JA, Bulder I, Boermeester MA, Van Till JW, Van Der Poll T, Wuillemin WA, Aarden LA, Zeerleder S. 2011. Activation of factor VII-activating protease in human inflammation: a sensor for cell death. Crit Care. 15(2):R110. 10.1186/cc10131.
  • Stephan F, Marsman G, Bakker LM, Bulder I, Stavenuiter F, Aarden LA, Zeerleder S. 2014. Cooperation of factor VII-activating protease and serum DNase I in the release of nucleosomes from necrotic cells. Arthritis Rheumatol. 66(3):686–693. 10.1002/art.38265.
  • Swystun LL, Mukherjee S, Liaw PC. 2011. Breast cancer chemotherapy induces the release of cell-free DNA, a novel procoagulant stimulus. J Thromb Haemost. 9(11):2313–2321. 10.1111/j.1538-7836.2011.04465.x.
  • Massberg S, Grahl L, Von Bruehl M-L, Manukyan D, Pfeiler S, Goosmann C, Brinkmann V, Lorenz M, Bidzhekov K, Khandagale AB, et al. 2010. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 16(8):887–896. DOI:10.1038/nm.2184
  • Oehmcke S, Mörgelin M, Herwald H. 2009. Activation of the human contact system on neutrophil extracellular traps. J Innate Immun. 1(3):225–230. 10.1159/000203700.
  • Gansler J, Jaax M, Leiting S, Appel B, Greinacher A, Fischer S, Preissner KT. 2012. Structural requirements for the procoagulant activity of nucleic acids. PLoS ONE. 7(11):e50399(1–10). 10.1371/journal.pone.0050399.
  • Ward CM, Tetaz TJ, Andrews RK, Berndt MC. 1997. Binding of the von Willebrand factor A1 domain to histone. Thromb Res. 86(6):469–477. 10.1016/s0049-3848(97)00096-0.
  • Fuchs TA, Brill A, Wagner DD. 2012. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol. 32(8):1777–1783. 10.1161/ATVBAHA.111.242859.
  • Chaaban H, Keshari RS, Silasi-Mansat R, Popescu NI, Mehta-D’Souza P, Lim YP, Lupu F. 2015. Inter-α inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury. Blood. 125(14):2286–2296. 10.1182/blood-2014-06-582759.
  • Keeling PJ, Palmer JD. 2008. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. 9(8):605–618. 10.1038/nrg2386.
  • Pelc SR. 1968. Turnover of DNA and function. Nature. 219(5150):162–163. 10.1038/219162a0.
  • Rogers JC, Boldt D, Kornfeld S, Skinner A, Valeri CR. 1972. Excretion of deoxyribonucleic acid by lymphocytes stimulated with phytohemagglutinin or antigen. Proc Natl Acad Sci U S A. 69(7):1685–1689. 10.1073/pnas.69.7.1685.
  • Anker P, Stroun M, Maurice PA Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Cancer Res. 1975;35(9):2375–2382. Published September 1975.
  • Bendich A, Wilczok T, Circulating BE. 1965. DNA as a possible factor in oncogenesis. Science. 148(3668):374–376. 10.1126/science.148.3668.374.
  • García-Olmo DC, Domínguez C, García-Arranz M, Anker P, Stroun M, García-Verdugo JM, García-Olmo D. 2010. Cell-free nucleic acids circulating in the plasma of colorectal cancer patients induce the oncogenic transformation of susceptible cultured cells. Cancer Res. 70(2):560–567. 10.1158/0008-5472.CAN-09-3513.
  • Jaiswal R, Sedger LM Intercellular vesicular transfer by exosomes, microparticles and oncosomes – implications for cancer biology and treatments. Front Oncol. 2019;9:125. Published 2019 Mar 6. doi:10.3389/fonc.2019.00125.
  • Minciacchi VR, Freeman MR, Di Vizio D. 2015. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 40:41–51. 10.1016/j.semcdb.2015.02.010.
  • Trejo-Becerril C, Pérez-Cárdenas E, Dueñas-González A. 2014. In vivo rat model to study horizontal tumor progression. Methods Mol Biol. 1165:175–185. 10.1007/978-1-4939-0856-1_12.
  • Trejo-Becerril C, Pérez-Cárdenas E, Taja-Chayeb L, Anker P, Herrera-Goepfert R, Medina-Velázquez LA, Hidalgo-Miranda A, Pérez-Montiel D, Chávez-Blanco A, Cruz-Velázquez J, et al. 2012. Cancer progression mediated by horizontal gene transfer in an in vivo model. PLoS One. 7(12):e52754. DOI:10.1371/journal.pone.0052754
  • Chan WF, Gurnot C, Montine TJ, Sonnen JA, Guthrie KA, Nelson JL. 2012. Male microchimerism in the human female brain. PLoS One. 7(9):e45592. 10.1371/journal.pone.0045592.
  • Mittra I, Khare NK, Raghuram GV, Chaubal R, Khambatti F, Gupta D, Gaikwad A, Prasannan P, Singh A, Iyer A, et al. 2015. Circulating nucleic acids damage DNA of healthy cells by integrating into their genomes. J Biosci. 40(1):91–111. DOI:10.1007/s12038-015-9508-6
  • Beljanski M, Bourgarel P, Beljanski M. 1981. Correlation between in vitro DNA synthesis, DNA strand separation and in vivo multiplication of cancer cells. Exp Cell Biol. 49(4):220–231. 10.1159/000163825.
  • Xing R, Zhou Y, Yu J, Yu Y, Nie Y, Luo W, Yang C, Xiong T, Wu WKK, Li Z, et al. 2019. Whole-genome sequencing reveals novel tandem-duplication hotspots and a prognostic mutational signature in gastric cancer. Nat Commun. 10(1):2037. DOI:10.1038/s41467-019-09644-6x
  • Gravina S, Sedivy JM, Vijg J. 2016. The dark side of circulating nucleic acids. Aging Cell. 15(3):398–399. 10.1111/acel.12454.
  • Mukherjee K, Storici F. 2012. A mechanism of gene amplification driven by small DNA fragments. PLoS Genet. 8(12):e1003119. 10.1371/journal.pgen.1003119.
  • Schaack S, Gilbert C, Promiscuous FC. 2010. DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol. 25(9):537–546. 10.1016/j.tree.2010.06.001.
  • Volik S, Alcaide M, Morin RD, Cell-free CC. 2016. DNA (cfDNA): clinical significance and utility in cancer shaped by emerging technologies. Mol Cancer Res. 14(10):898–908. 10.1158/1541-7786.MCR-16-0044.
  • Tuomela J, Sandholm J, Kaakinen M, Patel A, Kauppila JH, Ilvesaro J, Chen D, Harris KW, Graves D, Selander KS. 2013. DNA from dead cancer cells induces TLR9-mediated invasion and inflammation in living cancer cells. Breast Cancer Res Treat. 142(3):477–487. 10.1007/s10549-013-2762-0.
  • Garcia-Arranz M, Garcia-Olmo D, Vega-Clemente L, Stroun M, Preliminary A. 2017. Study of the action of virtosomes from non-dividing cells on tumour cell replication in vitro and in vivo. Anticancer Agents Med Chem. 17(10):1401–1410. 10.2174/1871520617666170213110536.
  • García-Olmo D, Garcia-Arranz M, Clemente LV, GahanPB SM 2015. Method for blocking tumour growth. European Patent 2015. Application number 13169783.1 (EP 2 808 027 A1).
  • Fiala C, Diamandis E. 2018. Utility of circulating tumor DNA in cancer diagnostics with emphasis on early detection
. BMC Med. 16(166):1–10. 10.1186/s12916-018-1157-9.
  • Heitzer E, Haque IS, Roberts CE, Speicher MR. 2019. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nature Rev Genetics. 20:71–88. 10.1038/s4576-018-0071-5.
  • Boto L. 2010. Horizontal gene transfer in evolution: facts and challenges. Proc Biol Sci. 277(1683):819–827. 10.1098/rspb.2009.1679.
  • Linardou H, Decnarain MP, Epenetos AA. 1995. Recombinant deoxyribonuclease I (DNAse I) and chimeras in cancer therapy. Eur J Cancer. 31(6):s30. 10.1016/0959—8049(95)95383-H.
  • Hawes MC, Wen F, Extracellular EE. 2015. DNA: a bridge to cancer. Cancer Res. 75(20):4260–4264. 10.1158/0008-5472.CAN-15-1546.
  • Serpas L, Chan RWY, Jiang P, Ni M, Sun K, Rashidfarrokhi A, Soni C, Sisirak V, Lee WS, Cheng SH, et al. 2019. Dnase1l3 deletion causes aberrations in length and end-motif frequencies in plasma DNA. Proc Natl Acad Sci U S A. 116(2):641–649. DOI:10.1073/pnas.1815031116
  • Alcázar-Leyva S, Cerón E, Masso F, Montaño LF, Gorocica P, Alvarado-Vásquez N. Incubation with DNase I inhibits tumor cell proliferation. Med Sci Monit. 2009;15(2):CR51–55.
  • Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clin Rev Allergy Immunol. 2020;1–18. doi:10.1007/s12016-020-08804-7.
  • Smalheiser NE. 2019. Mining clinical case reports to identify new lines of investigation in Alzheimer´s disease: the curious case of DNAse I. J Alzheimers Dis Rep. 3(1):71–76. 10.3233/ADR-190100.
  • Stefanius K, Servage K, De Souza Santos M, Gray HF, Toombs JE, Chimalapati S, Kim MS, Malladi VS, Brekken R, Orth K. 2019. Human pancreatic cancer cell exosomes, but not human normal cell exosomes, act as an initiator in cell transformation. Elife. 8:e40226. 10.7554/eLife.40226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.