1,438
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

DDX24 regulates the chemosensitivity of hepatocellular carcinoma to sorafenib via mediating the expression of SNORA18

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1-14 | Received 15 Feb 2022, Accepted 06 Oct 2022, Published online: 30 Oct 2022

References

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. 2021. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. DOI:10.3322/caac.21660
  • Lee M, Ko H, Yun M. 2018. Cancer metabolism as a mechanism of treatment resistance and potential therapeutic target in hepatocellular carcinoma. Yonsei Med J. 59(10):1143–1149. DOI:10.3349/ymj.2018.59.10.1143
  • Li Z, Zhao X, Jiang P, Xiao S, Wu G, Chen K, Zhang X, Liu H, Han X, Wang S, et al. 2016. HBV is a risk factor for poor patient prognosis after curative resection of hepatocellular carcinoma: a retrospective case-control study. Medicine. 95(31):e4224. DOI:10.1097/MD.0000000000004224
  • Wang Y, Gao J, Zhang D, Zhang J, Ma J, Jiang H. 2010. New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. J Hepatol. 53(1):132–144. DOI:10.1016/j.jhep.2010.02.027
  • Avila M, Berasain C. 2015. Making sorafenib irresistible: in vivo screening for mechanisms of therapy resistance in hepatocellular carcinoma hits on Mapk14. Hepatology. 61(5):1755–1757. DOI:10.1002/hep.27739
  • Chan L-K, Ho DW, Kam CS, Chiu EY, Lo IL, Yau DT, Cheung ETY, Tang C-N, Tang VWL, Lee TKW, et al. 2021. RSK2-inactivating mutations potentiate MAPK signaling and support cholesterol metabolism in hepatocellular carcinoma. J Hepatol. 74(2):360–371. DOI:10.1016/j.jhep.2020.08.036
  • Dong XF, Liu TQ, Zhi XT, Zou J, Zhong JT, Li T, Mo X-L, Zhou W, Guo -W-W, Liu X, et al. 2018. COX-2/PGE2 axis regulates hif2α activity to promote hepatocellular carcinoma hypoxic response and reduce the sensitivity of sorafenib treatment. Clin Cancer Res. 24(13):3204–3216. DOI:10.1158/1078-0432.CCR-17-2725
  • Linder P, Jankowsky E. 2011. From unwinding to clamping - the DEAD box RNA helicase family. Nat Rev Mol Cell Biol. 12(8):505–516. DOI:10.1038/nrm3154
  • Linder P, Fuller-Pace FV. 2013. Looking back on the birth of DEAD-box RNA helicases. Biochim Biophys Acta. 1829(8):750–755. DOI:10.1016/j.bbagrm.2013.03.007
  • Pang P, Hu X, Zhou B, Mao J, Liang Y, Jiang Z, Huang M, Liu R, Zhang Y, Qian J, et al. 2019. DDX24 mutations associated with malformations of major vessels to the viscera. Hepatology. 69:803–816. DOI:10.1002/hep.30200
  • Shi D, Dai C, Qin J, Gu W. 2016. Negative regulation of the p300-p53 interplay by DDX24. Oncogene. 35(4):528–536. DOI:10.1038/onc.2015.77
  • Oliver D, Ji H, Liu P, Gasparian A, Gardiner E, Lee S, Zenteno A, Perinskaya LO, Chen M, Buckhaults P, et al. 2017. Identification of novel cancer therapeutic targets using a designed and pooled shRNA library screen. Sci Rep. 7:43023. DOI:10.1038/srep43023
  • Lui L, Lowe T. 2013. Small nucleolar RNAs and RNA-guided post-transcriptional modification. Essays Biochem. 54:53–77. DOI:10.1042/bse0540053
  • Lafontaine DL, Tollervey D. 1998. Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem Sci. 23(10):383–388. DOI:10.1016/s0968-0004(98)01260-2
  • Kiss T. 2002. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell. 109(2):145–148. DOI:10.1016/s0092-8674(02)00718-3
  • Shuwen H, Xi Y, Quan Q, Yin J, Miao D. 2020. Can small nucleolar RNA be a novel molecular target for hepatocellular carcinoma? Gene. 733:144384. DOI:10.1016/j.gene.2020.144384
  • Taniuchi K, Ogasawara M. 2020. KHSRP-bound small nucleolar RNAs associate with promotion of cell invasiveness and metastasis of pancreatic cancer. Oncotarget. 11:131–147. DOI:10.18632/oncotarget.27413
  • Kitagawa T, Taniuchi K, Tsuboi M, Sakaguchi M, Kohsaki T, Okabayashi T, Saibara T. 2019. Circulating pancreatic cancer exosomal RNA s for detection of pancreatic cancer. Mol Oncol. 13(2):212–227. DOI:10.1002/1878-0261.12398
  • Chen CT, Wu PH, Hu CC, Nien HC, Wang JT, Sheu JC, Chow LP. Aberrant Upregulation of Indoleamine 2,3-Dioxygenase 1 promotes proliferation and metastasis of hepatocellular carcinoma cells via coordinated activation of AhR and β-Catenin Signaling. Int J Mol Sci. 2021;22:21. DOI:10.3390/ijms222111661.
  • Lv J, Zhang S, Wu H, Lu J, Lu Y, Wang F, Zhao W, Zhao P, Lu J, Fang Q, et al. 2020. Deubiquitinase PSMD14 enhances hepatocellular carcinoma growth and metastasis by stabilizing GRB2. Cancer Lett. 469:22–34. DOI:10.1016/j.canlet.2019.10.025
  • Xiaoqian W, Bing Z, Yangwei L, Yafei Z, Tingting Z, Yi W, Qingjun L, Suxia L, Ling Z, Bo W, et al. DEAD-box Helicase 27 promotes hepatocellular carcinoma progression through ERK Signaling. Technol Cancer Res Treat. 2021 Jan-Dec;20:15330338211055953. DOI:10.1177/15330338211055953
  • Yu Y, Zhao D, Li K, Cai Y, Xu P, Li R, Li J, Chen X, Chen P, Cui G. 2020. E2F1 mediated DDX11 transcriptional activation promotes hepatocellular carcinoma progression through PI3K/AKT/mTOR pathway. Cell Death Dis. 11(4):273. DOI:10.1038/s41419-020-2478-0
  • Lokau L, Schoeder S, Haybaeck H, Garbers G. 2019. Jak-stat signaling induced by interleukin-6 family cytokines in hepatocellular carcinoma. Cancers. 11(11):1704. DOI:10.3390/cancers11111704
  • Al-Rajabi R, Patel S, Ketchum NS, Jaime NA, Lu T-W, Pollock BH, Mahalingam D. 2015. Comparative dosing and efficacy of sorafenib in hepatocellular cancer patients with varying liver dysfunction. J Gastrointest Oncol. 6(3):259–267. DOI:10.3978/j.2078-6891.2015.005
  • Liang Y, Chen J, Yu Q, Ji T, Zhang B, Xu J, Dai Y, Xie Y, Lin H, Liang X, et al. 2017. Phosphorylated ERK is a potential prognostic biomarker for Sorafenib response in hepatocellular carcinoma. Cancer Med. 6(12):2787–2795. DOI:10.1002/cam4.1228
  • Nishida N, Kitano M, Sakurai T, Kudo M. 2015. Molecular mechanism and prediction of sorafenib chemoresistance in human hepatocellular carcinoma. Dig Dis. 33(6):771–779. DOI:10.1159/000439102
  • Fornari F, Pollutri D, Patrizi C, La Bella T, Marinelli S, Casadei Gardini A, Marisi G, Baron Toaldo M, Baglioni M, Salvatore V, et al. 2017. In Hepatocellular Carcinoma miR-221 modulates sorafenib resistance through inhibition of Caspase-3–Mediated Apoptosis. Clin Cancer Res. 23(14):3953–3965. DOI:10.1158/1078-0432.CCR-16-1464
  • Jankowsky E. 2011. RNA helicases at work: binding and rearranging. Trends Biochem Sci. 36(1):19–29. DOI:10.1016/j.tibs.2010.07.008
  • Lafontaine DL. 2015. Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nat Struct Mol Biol. 22(1):11–19. DOI:10.1038/nsmb.2939
  • Wang H, Ma P, Liu P, Chen B, Liu Z. 2018. Small nucleolar RNA U2_19 promotes hepatocellular carcinoma progression by regulating Wnt/β-catenin signaling. Biochem Biophys Res Commun. 500(2):351–356. DOI:10.1016/j.bbrc.2018.04.074
  • Wu L, Zheng J, Chen P, Liu Q, Yuan Y. 2017. Small nucleolar RNA ACA11 promotes proliferation, migration and invasion in hepatocellular carcinoma by targeting the PI3K/AKT signaling pathway. Bio Pharmaco. 90:705–712. DOI:10.1016/j.biopha.2017.04.014
  • Li C, Wu L, Liu P, Li K, Zhang Z, He Y, Liu Q, Jiang P, Yang Z, Liu Z, et al. 2020. The C/D box small nucleolar RNA SNORD52 regulated by Upf1 facilitates Hepatocarcinogenesis by stabilizing CDK1. Theranostics. 10(20):9348–9363. DOI:10.7150/thno.47677
  • Gorski JJ, Pathak S, Panov K, Kasciukovic T, Panova T, Russell J, Zomerdijk JC. 2007. A novel TBP-associated factor of SL1 functions in RNA polymerase I transcription. Embo J. 26(6):1560–1568. DOI:10.1038/sj.emboj.7601601