4,239
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Netrin-1 inducing antiapoptotic effect of acute myeloid leukemia cells in a concentration-dependent manner through the Unc-5 netrin receptor B-focal adhesion kinase axis

ORCID Icon, , , , , , & ORCID Icon show all
Article: 2200705 | Received 19 Jul 2022, Accepted 04 Apr 2023, Published online: 10 Apr 2023

References

  • Conneely SE, Stevens AM. 2021. Acute myeloid leukemia in children: emerging paradigms in genetics and new approaches to therapy. Curr Oncol Rep. 23(2):16. doi:10.1007/s11912-020-01009-3.
  • Pelcovits A, Niroula R. Acute myeloid leukemia: a review. R I Med J. 2020;103:38–9. 2013.
  • Seth R, Singh A. 2015. Leukemias in children. Indian J Pediatr. 82(9):817–824. doi:10.1007/s12098-015-1695-5.
  • Kim H. 2020. Treatments for children and adolescents with AML. Blood Res. 55(S1):S5–13. doi:10.5045/br.2020.S002.
  • Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW. 2016. The 2016 revision to the world health organization classification of myeloid neoplasms and acute leukemia. Blood. 127(20):2391–2405. doi:10.1182/blood-2016-03-643544.
  • Boztug H, Mühlegger N, Glogova E, Mann G, Urban C, Meister B, Schmitt K, Jones N, Attarbaschi A, Haas O, et al. Development of treatment and clinical results in childhood AML in Austria (1993–2013). Memo. 2014;7(1):63–74. doi:10.1007/s12254-014-0135-y.
  • Kiem Hao T, Van Ha C, Huu Son N, Nhu Hiep P. 2020. Long-term outcome of childhood acute myeloid leukemia: a 10-year retrospective cohort study. Pediatr Rep. 12(1):8486. doi:10.4081/pr.2020.8486.
  • Van Weelderen RE, Klein K, Natawidjaja MD, De Vries R, Kaspers GJ. 2021. Outcome of pediatric acute myeloid leukemia (AML) in low- and middle-income countries: a systematic review of the literature. Expert Rev Anticancer Ther. 21(7):765–780. doi:10.1080/14737140.2021.1895756.
  • Davila J, Slotkin E, Renaud T. 2014. Relapsed and refractory pediatric acute myeloid leukemia: current and emerging treatments. Paediatr Drugs. 16(2):151–168. doi:10.1007/s40272-013-0048-y.
  • Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell. 100(1):57–70. doi:10.1016/S0092-8674(00)81683-9.
  • Fulda S. Evasion of apoptosis as a cellular stress response in cancer. Int J Cell Biol. 2010;2010:370835. doi:10.1155/2010/370835.
  • Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Magaud JP, Guyotat D. 1993. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood. 81(11):3091–3096. doi:10.1182/blood.V81.11.3091.3091.
  • Konopleva M, Zhao S, Hu W, Jiang S, Snell V, Weidner D, Jackson CE, Zhang X, Champlin R, Estey E, et al. The anti-apoptotic genes Bcl-X L and Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic CD34 + cells. Br J Haematol. 2002;118(2):521–534. doi:10.1046/j.1365-2141.2002.03637.x.
  • Wuchter C, Karawajew L, Ruppert V, Schrappe M, Harbott J, Ratei R, Dörken B, Ludwig WD. 2000. Constitutive expression levels of CD95 and Bcl-2 as well as CD95 function and spontaneous apoptosis in vitro do not predict the response to induction chemotherapy and relapse rate in childhood acute lymphoblastic leukaemia. Br J Haematol. 110(1):154–160. doi:10.1046/j.1365-2141.2000.02147.x.
  • Huyghe A, Furlan G, Ozmadenci D, Galonska C, Charlton J, Gaume X, Combémorel N, Riemenschneider C, Allègre N, Zhang J, et al. Netrin-1 promotes naive pluripotency through Neo1 and Unc5b co-regulation of Wnt and MAPK signalling. Nat Cell Biol. 2020;22(4):389–400. doi:10.1038/s41556-020-0483-2.
  • Kefeli U, Ucuncu Kefeli A, Cabuk D, Isik U, Sonkaya A, Acikgoz O, Ozden E, Uygun K. 2017. Netrin-1 in cancer: potential biomarker and therapeutic target? Tumour Biol J Int Soc Oncodevelopmental Biol Med. 39(4):1010428317698388. doi:10.1177/1010428317698388.
  • Liu J, Yao F, Wu R, Morgan M, Thorburn A, Finley RL, Chen YQ. 2002. Mediation of the DCC apoptotic signal by DIP13α. J Biol Chem. 277(29):26281–26285. doi:10.1074/jbc.M204679200.
  • Llambi F, Causeret F, Bloch-Gallego E, Mehlen P. 2001. Netrin-1 acts as a survival factor via its receptors UNC5H and DCC. Embo J. 20(11):2715–2722. doi:10.1093/emboj/20.11.2715.
  • Dumartin L, Quemener C, Laklai H, Herbert J, Bicknell R, Bousquet C, Pyronnet S, Castronovo V, Schilling MK, Bikfalvi A, et al. Netrin-1 mediates early events in pancreatic adenocarcinoma progression, acting on tumor and endothelial cells. Gastroenterology. 2010;138 1595–606, 1606.e1-8(4). 10.1053/j.gastro.2009.12.061
  • Huang L, An X, Zhu Y, Zhang K, Xiao L, Yao X, Zeng X, Liang S, Yu J. 2022. Netrin-1 induces the anti-apoptotic and pro-survival effects of B-ALL cells through the Unc5b-MAPK axis. Cell Commun Signal CCS. 20(1):122. doi:10.1186/s12964-022-00935-y.
  • Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stein E. 1999. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell. 97(7):927–941. doi:10.1016/S0092-8674(00)80804-1.
  • Forcet C, Ye X, Granger L, Corset V, Shin H, Bredesen DE, Mehlen P. 2001. The dependence receptor DCC (deleted in colorectal cancer) defines an alternative mechanism for caspase activation. Proc Natl Acad Sci U S A. 98(6):3416–3421. doi:10.1073/pnas.051378298.
  • Hemmings BA. 1997. Akt signaling: linking membrane events to life and death decisions. Science. 275(5300):628–630. doi:10.1126/science.275.5300.628.
  • Xia X, Hu Z, Wang S, Yin K. Netrin-1: an emerging player in inflammatory diseases. Cytokine Growth Factor Rev. 2022;64:46–56. doi:10.1016/j.cytogfr.2022.01.003.
  • Chen J, Wang S, Xu S, Han B. Netrin-1 protein expression in gastric cancer and its correlation with clinicopathologic features and prognosis. Sichuan Da Xue Xue Bao Yi Xue Ban. 2011;42(6):802–806.
  • Papanastasiou AD, Pampalakis G, Katsaros D, Sotiropoulou G. 2011. Netrin-1 overexpression is predictive of ovarian malignancies. Oncotarget. 2(5):363–367. doi:10.18632/oncotarget.258.
  • Li L, Hu Y, Ylivinkka I, Li H, Chen P, Keski-Oja J, Hyytiäinen M, Zhang L. 2013. NETRIN-4 protects glioblastoma cells from temozolomide induced senescence. Plos One. 8(11):e80363. doi:10.1371/journal.pone.0080363.
  • Meyerhardt JA, Caca K, Eckstrand BC, Hu G, Lengauer C, Banavali S, Look AT, Fearon ER. 1999. Netrin-1: interaction with deleted in colorectal cancer (DCC) and alterations in brain tumors and neuroblastomas. Cell Growth Differ Mol Biol J Am Assoc Cancer Res. 10:35–42.
  • Latil A, Chêne L, Cochant-Priollet B, Mangin P, Fournier G, Berthon P, Cussenot O. 2003. Quantification of expression of netrins, slits and their receptors in human prostate tumors. Int J Cancer. 103(3):306–315. doi:10.1002/ijc.10821.
  • X-Z A, Zhao Z-G, Luo Y-X, Zhang R, Tang X-Q, Hao D-L, Zhao X, Lv X, Liu D-P. 2016. Netrin-1 suppresses the MEK/ERK pathway and ITGB4 in pancreatic cancer. Oncotarget. 7(17):24719–24733. doi:10.18632/oncotarget.8348.
  • Bell CH, Healey E, van Erp S, Bishop B, Tang C, Gilbert RJC, Aricescu AR, Pasterkamp RJ, Siebold C. 2013. Structure of the repulsive guidance molecule (Rgm)–neogenin signaling hub. Science. 341(6141):77–80. doi:10.1126/science.1232322.
  • Rajagopalan S, Deitinghoff L, Davis D, Conrad S, Skutella T, Chedotal A, Mueller BK, Strittmatter SM. 2004. Neogenin mediates the action of repulsive guidance molecule. Nat Cell Biol. 6(8):756–762. doi:10.1038/ncb1156.
  • Xu K, Wu Z, Renier N, Antipenko A, Tzvetkova-Robev D, Xu Y, Minchenko M, Nardi-Dei V, Rajashankar KR, Himanen J, et al. Neural migration. Structures of netrin-1 bound to two receptors provide insight into its axon guidance mechanism. Science. 2014;344(6189):1275–1279. doi:10.1126/science.1255149.
  • Lu X, Le Noble F, Yuan L, Jiang Q, De Lafarge B, Sugiyama D, Bréant C, Claes F, De Smet F, Thomas J-L, et al. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature. 2004;432(7014):179–186. doi:10.1038/nature03080.
  • Ko SY, Dass CR, Nurgali K. 2012. Netrin-1 in the developing enteric nervous system and colorectal cancer. Trends Mol Med. 18(9):544–554. doi:10.1016/j.molmed.2012.07.001.
  • Yin K, Wang L, Zhang X, He Z, Xia Y, Xu J, Wei S, Li B, Li Z, Sun G, et al. Netrin-1 promotes gastric cancer cell proliferation and invasion via the receptor neogenin through PI3K/AKT signaling pathway. Oncotarget. 2017;8(31):51177–51189. doi:10.18632/oncotarget.17750.
  • Sabbatini P, McCormick F. 1999. Phosphoinositide 3-OH kinase (PI3K) and PKB/Akt delay the onset of p53-mediated, transcriptionally dependent apoptosis. J Biol Chem. 274(34):24263–24269. doi:10.1074/jbc.274.34.24263.
  • Yamaguchi A, Tamatani M, Matsuzaki H, Namikawa K, Kiyama H, Vitek MP, Mitsuda N, Tohyama M. 2001. Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53. J Biol Chem. 276(7):5256–5264. doi:10.1074/jbc.M008552200.
  • Vivanco I, Sawyers CL. 2002. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat Rev Cancer. 2(7):489–501. doi:10.1038/nrc839.
  • Sulzmaier FJ, Jean C, Schlaepfer DD. 2014. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer. 14(9):598–610. doi:10.1038/nrc3792.
  • Guo Z, Mo Z. 2020. Keap1-Nrf2 signaling pathway in angiogenesis and vascular diseases. J Tissue Eng Regen Med. 14(6):869–883. doi:10.1002/term.3053.
  • Herfindal L, Selheim F. 2006. Microcystin produces disparate effects on liver cells in a dose dependent manner. Mini Rev Med Chem. 6(3):279–285. doi:10.2174/138955706776073475.
  • Creutzig U, van den Heuvel-Eibrink MM, Gibson B, Dworzak MN, Adachi S, de Bont E, Harbott J, Hasle H, Johnston D, Kinoshita A, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood. 2012;120(16):3187–3205. doi:10.1182/blood-2012-03-362608.