1,828
Views
0
CrossRef citations to date
0
Altmetric
Review

Agent-based modeling in cancer biomedicine: applications and tools for calibration and validation

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2344600 | Received 30 Oct 2023, Accepted 15 Apr 2024, Published online: 28 Apr 2024

References

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–25. doi:10.1016/j.cell.2011.02.013.
  • Metzcar J, Wang Y, Heiland R, Macklin P. A review of cell-based computational modeling in cancer biology. JCO Clin Cancer Inform. 2019;3(3):1–13. doi:10.1200/CCI.18.00069.
  • Byrne H, Alarcon T, Owen M, Webb SD, Maini PK. Modelling aspects of cancer dynamics: a review. Phil Trans Royal Soc A: Math, Phys Eng Sci. 2006;364(1843):1563–1578. doi:10.1098/rsta.2006.1786.
  • Yin A, Moes DJA, van Hasselt JG, Swen JJ, Guchelaar H-J. A review of mathematical models for tumor dynamics and treatment resistance evolution of solid tumors. CPT: Pharmacometrics Syst Pharmacol. 2019;8(10):720–737. doi:10.1002/psp4.12450.
  • Hadjicharalambous M, Wijeratne PA, Vavourakis V. From tumour perfusion to drug delivery and clinical translation of in silico cancer models. Methods. 2021;185:82–93. Methods on simulation in biomedicine. https://www.sciencedirect.com/science/article/pii/S1046202319302129
  • Vavourakis V, Stylianopoulos T, Wijeratne PA, McCulloch AD. In-silico dynamic analysis of cytotoxic drug administration to solid tumours: effect of binding affinity and vessel permeability. PLOS Comput Biol. 2018 10;14(10):1–30. doi:10.1371/journal.pcbi.1006460
  • Wijeratne PA, Vavourakis V. A quantitative in silico platform for simulating cytotoxic and nanoparticle drug delivery to solid tumours. Interface Focus. 2019;9(3):20180063. doi:10.1098/rsfs.2018.0063.
  • Tzamali E, Tzedakis G, Sakkalis V. Modeling how heterogeneity in cell cycle length affects cancer cell growth dynamics in response to treatment. Front Oncol. 2020 10;10. doi:10.3389/fonc.2020.01552
  • Kashkooli FM, R M, Soltani M. Drug delivery through nanoparticles in solid tumors: a mechanistic understanding. Nanomedicine. 2022;17(10):695–716. doi:10.2217/nnm-2021-0126.
  • Hadjicharalambous M, Ioannou E, Aristokleous N, Gazeli K, Anastassiou C, Vavourakis V. Combined anti-angiogenic and cytotoxic treatment of a solid tumour: in silico investigation of a xenograft animal model’s digital twin. J Theor Biol. 2022;553:111246. https://www.sciencedirect.com/science/article/pii/S0022519322002399
  • An G, Mi Q, Dutta-Moscato J, Vodovotz Y. Agent-based models in translational systems biology. WIREs Sys Biol Medi. 2009;1(2):159–171. https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wsbm.45
  • Wilensky U, Rand W An introduction to agent-based modeling. MIT Press; 2015. January; https://www.jstor.org/stable/j.ctt17kk851.
  • Bauer R, Clowry GJ, Kaiser M. Creative destruction: a basic computational model of cortical layer formation. Cereb Cortex. 2021;31(7):3237–3253. doi:10.1093/cercor/bhab003.
  • de Montigny J, Iosif A, Breitwieser L, Manca M, Bauer R, Vavourakis V. An in silico hybrid continuum-/agent-based procedure to modelling cancer development: Interrogating the interplay amongst glioma invasion, vascularity and necrosis. Methods. 2021;185:94–104. Methods on simulation in biomedicine. https://www.sciencedirect.com/science/article/pii/S1046202319302130
  • Breitwieser L, Hesam A, de Montigny J, Vavourakis V, Iosif A, Jennings J, Kaiser M, Manca M, Di Meglio A, Al-Ars Z, et al. BioDynaMo: a modular platform for high-performance agent-based simulation. Bioinformatics. 2021; 38(2):453–460. doi:10.1093/bioinformatics/btab649.
  • Gazeli K, Hadjicharalambous M, Ioannou E, Gazeli O, Lazarou C, Anastassiou C, Svarnas P, Vavourakis V, Georghiou GE. Interrogating an in silico model to determine helium plasma jet and chemotherapy efficacy against B16F10 melanoma cells. Appl Phys Lett. 2022;120(5):054101. doi:10.1063/5.0077694.
  • Cogno N, Bauer R, Durante M. Mechanistic model of radiotherapy-induced lung fibrosis using coupled 3D agent-based and monte carlo simulations. Commun Med (Lond). 2024;4(1):16. doi:10.1038/s43856-024-00442-w.
  • Clancy CE, An G, Cannon WR, Liu Y, May EE, Ortoleva P, Popel AS, Sluka JP, Su J, Vicini P, et al. Multiscale modeling in the clinic: drug design and development. Ann Biomed Eng. 2016; 44(9):2591–2610. doi:10.1007/s10439-016-1563-0.
  • Rockne RC, Hawkins-Daarud A, Swanson KR, Sluka JP, Glazier JA, Macklin P, Hormuth DA, Jarrett AM, Lima EABF, Tinsley Oden J, et al. The 2019 mathematical oncology roadmap. Phys Biol. 2019; 16(4):041005. doi:10.1088/1478-3975/ab1a09.
  • An G, Kulkarni S. 2015. An agent-based modeling framework linking inflammation and cancer using evolutionary principles: description of a generative hierarchy for the hallmarks of cancer and developing a bridge between mechanism and epidemiological data. Math Biosci. 260:16–24. doi:10.1016/j.mbs.2014.07.009.
  • Araujo A, Baum B, Bentley P, Merks RMH. The role of chromosome missegregation in cancer development: a theoretical approach using agent-based modelling. PLOS One. 2013;8(8):e72206. doi:10.1371/journal.pone.0072206.
  • Lynch AR, Arp NL, Zhou AS, Weaver BA, Burkard ME. 2022. Quantifying chromosomal instability from intratumoral karyotype diversity using agent-based modeling and Bayesian inference. eLife. 11:1–43. doi:10.7554/eLife.69799.
  • Chen Y, Wang H, Zhang J, Chen K, Li Y. Simulation of avascular tumor growth by agentbased game model involving phenotype-phenotype interactions. Sci Rep. 2015;5(1):1–10. https://www.nature.com/articles/srep17992
  • Kareva I, Abou-Slaybi A, Dodd O, Dashevsky O, Klement GL. Normal wound healing and tumor angiogenesis as a game of competitive inhibition. PLOS One. 2016;11(12):1–16. 10.1371/journal.pone.0166655
  • Phillips CM, Lima EA, Woodall RT, Brock A, Yankeelov TE. A hybrid model of tumor growth and angiogenesis: In silico experiments. PLOS ONE. 2020;15(4):1–27. doi:10.1371/journal.pone.0231137.
  • Wang J, Zhang L, Jing C, Ye G, Wu H, Miao H, Wu Y, Zhou X. Multi-scale agent-based modeling on melanoma and its related angiogenesis analysis. Theor Biol Med Model. 2013;10(1):1–19. doi:10.1186/1742-4682-10-41.
  • Zhao L, Wientjes MG, Au JL. Evaluation of combination chemotherapy. Clin Cancer Res. 2004;10(23):7994–8004. https://aacrjournals.org/clincancerres/article/10/23/7994/185407/
  • Lima E, Faghihi D, Philley R, Yang J, Virostko J, Phillips CM, Yankeelov TE. Bayesian calibration of a stochastic, multiscale agent-based model for predicting in vitro tumor growth. PLOS Comput Biol. 2021;17(11):e1008845. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008845
  • Gallaher JA, Massey SC, Hawkins-Daarud A, Noticewala SS, Rockne RC, Johnston SK, Gonzalez-Cuyar L, Juliano J, Gil O, Swanson KR, et al. From cells to tissue: how cell scale heterogeneity impacts glioblastoma growth and treatment response. PLOS Comput Biol. 2020; 16(2):1–27. doi:10.1371/journal.pcbi.1007672.
  • Greene JM, Levy D, Fung KL, Souza PS, Gottesman MM, Lavi O. 2015. Modeling intrinsic heterogeneity and growth of cancer cells. J Theor Biol. 367:262–277. doi:10.1016/j.jtbi.2014.11.017.
  • Gerlee P, Nelander S, Alber MS. The impact of phenotypic switching on glioblastoma growth and invasion. PLOS Comput Biol. 2012;8(6):e1002556. doi:10.1371/journal.pcbi.1002556.
  • Gallaher JA, Brown JS, Anderson AR. The impact of proliferation-migration tradeoffs on phenotypic evolution in cancer. Sci Rep. 2019;9(1):1–10. doi:10.1038/s41598-019-39636-x.
  • Grimes DR, Jansen M, Macauley RJ, Scott JG, Basanta D. Evidence for hypoxia increasing the tempo of evolution in glioblastoma. Br J Cancer. 2020;123(10):1562–1569. doi:10.1038/s41416-020-1021-5.
  • Axenie C, Kurz D Tumor characterization using unsupervised learning of mathematical relations within breast cancer data. In: Artificial Neural Networks and Machine Learning–ICANN 2020: 29th International Conference on Artificial Neural Networks; Springer; 2020. p. 838–849. doi:10.1007/3-030-61616-8_67.
  • Poleszczuk J, Hahnfeldt P, Enderling H. Biphasic modulation of cancer stem cell-driven solid tumour dynamics in response to reactivated replicative senescence. Cell Prolif. 2014;47(3):267–276. doi:10.1111/cpr.12101.
  • Norton KA, Popel AS. An agent-based model of cancer stem cell initiated avascular tumour growth and metastasis: the effect of seeding frequency and location. Interface Focus. 2014;11(100):20140640. doi:10.1098/rsif.2014.0640.
  • Rahman MM, Feng Y, Yankeelov TE, Oden JT. A fully coupled space–time multiscale modeling framework for predicting tumor growth. Comput Methods Appl Mech Eng. 2017;320(5):261–286. https://www.sciencedirectcom/science/article/pii/S004578251631249X10.1016/j.cma.2017.03.021
  • Klank RL, Rosenfeld SS, Odde DJ. A Brownian dynamics tumor progression simulator with application to glioblastoma. Convergent Sci Phys Oncol. 2018;4(1):15001. doi:10.1088/2057-1739/aa9e6e.
  • Norton KA, Wallace T, Pandey NB, Popel AS. An agent-based model of triple-negative breast cancer: The interplay between chemokine receptor CCR5 expression, cancer stem cells, and hypoxia. BMC Syst Biol. 2017;11(1):1–15. doi:10.1186/s12918-017-0445-x.
  • Karolak A, Poonja S, Rejniak KA, Peirce SM. Morphophenotypic classification of tumor organoids as an indicator of drug exposure and penetration potential. PLOS Comput Biol. 2019;15(7):1–21. doi:10.1371/journal.pcbi.1007214.
  • Bull JA, Mech F, Quaiser T, Waters SL, Byrne HM. Mathematical modelling reveals cellular dynamics a tumour spheroids. PLOS Comput Biol. 2020;16(8):1–25. doi:10.1371/journal.pcbi.1007961.
  • Jamous S, Comba A, Lowenstein PR, Motsch S. Self-organization in brain tumors: how cell morphology and cell density influence glioma pattern formation. PLOS Comput Biol. 2020;16(5):1–22. doi:10.1371/journal.pcbi.1007611.
  • Suveges S, Chamseddine I, Rejniak KA, Eftimie R, Trucu D. Collective cell migration in a fibrous environment: a hybrid multiscale modelling approach. Front Appl Math Stat. 2021;7(3):139–148. https://www.frontiersin.org/articles/10.3389/fams.2021.680029/full
  • Gong C, Ruiz-Martinez A, Kimko H, Popel AS. A spatial quantitative systems pharmacology platform spQSP-IO for simulations of tumor–immune interactions and effects of checkpoint inhibitor immunotherapy. Cancers. 2021;13(15):1–33. doi:10.3390/cancers13153751.
  • Hong CR, Bogle G, Wang J, Patel K, Pruijn FB, Wilson WR, Hicks KO. Bystander effects of hypoxia-activated prodrugs: agent-based modeling using three dimensional cell cultures. Front Pharmacol. 2018;9(SEP):1013. http://www.ncbi.nlm.nih.gov/pubmed/30279659http://www.pubmedcentral.nih.gov/articlerender.fcgi? artid=PMC6153434
  • Kempf H, Bleicher M, Meyer-Herman M, Rocha S. Spatio-temporal dynamics of hypoxia during radiotherapy. PLOS One. 2015;10(8):1–23. 10.1371/journal.pone.0133357.
  • Gong C, Milberg O, Wang B, Vicini P, Narwal R, Roskos L, Popel AS. A computational multiscale agent-based model for simulating spatio-temporal tumour immune response to PD1 and PDL1 inhibition. J R Soc Interface. 2017;14(134):20170320. doi:10.1098/rsif.2017.0320.
  • Ruiz-Martinez A, Gong C, Wang H, Sové RJ, Mi H, Kimko H, Popel AS. Simulations of tumor growth and response to immunotherapy by coupling a spatial agent-based model with a whole-patient quantitative systems pharmacology model. PLOS Comput Biol. 2022;18(7):e1010254. http://www.ncbi.nlm.nih.gov/pubmed/35867773http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC9348712
  • Prybutok AN, Yu JS, Leonard JN, Bagheri N. 2022. Mapping CAR T-Cell design space using agent-based models. Front Mol Biosci. 9:1–18. doi:10.3389/fmolb.2022.849363.
  • Beck RJ, Slagter M, Beltman JB. Contact-dependent killing by cytotoxic T lymphocytes is insufficient for EL4 tumor regression in vivo. Cancer Res. 2019;79(13):3406–3416. doi:10.1158/0008-5472.CAN-18-3147.
  • Khazen R, Müller S, Lafouresse F, Valitutti S, Cussat-Blanc S. Sequential adjustment of cytotoxic T lymphocyte densities improves efficacy in controlling tumor growth. Sci Rep. 2019;9(1):1–11. doi:10.1038/s41598-019-48711-2.
  • Kather J, Poleszczuk J, Suarez-Carmona M, Krisam J, Charoentong P, Valous NA, Weis C-A, Tavernar L, Leiss F, Herpel E, et al. In silico modeling of immunotherapy and stroma-targeting therapies in human colorectal cancer. Cancer Res. 2017; 77(22):6442–6452. doi:10.1158/0008-5472.CAN-17-2006.
  • Jenner A, Smalley M, Goldman D, Goins WF, Cobbs CS, Puchalski RB, Chiocca EA, Lawler S, Macklin P, Goldman A, et al. Agent-based computational modeling of glioblastoma predicts that stromal density is central to oncolytic virus efficacy. iScience. 2022 jun; 25(6):104395. doi:10.1016/j.isci.2022.104395.
  • Su J, Zhang L, Zhang W, Choi DS, Wen J, Jiang B, Chang C-C, Zhou X. Targeting the biophysical properties of the myeloma initiating cell niches: a pharmaceutical synergism analysis using multi-scale agent-based modeling. PLOS One. 2014;9(1):1–13. 10.1371/journal.pone.0085059.
  • Ji Z, Su J, Wu D, Peng H, Zhao W, Zhao BN, Zhou X. Predicting the impact of combined therapies on myeloma cell growth using a hybrid multi-scale agent-based model. Oncotarget. 2017;8(5):7647–7665. https://www.oncotarget.com/lookup/doi/10.18632/oncotarget.13831
  • Uppal A, Wightman SC, Ganai S, Weichselbaum RR, An G. Investigation of the essential role of platelettumor cell interactions in metastasis progression using an agent-based model. Theor Biol Med Model. 2014;11(1):1–23. https://tbiomed.biomedcentral.com/articles/10.1186/1742-4682-11-17.
  • Heidary Z, Ghaisari J, Moein S, Haghjooy Javanmard S. The double-edged sword role of fibroblasts in the interaction with cancer cells; an agent-based modeling approach. PLOS One. 2020;15(5):1–14. doi:10.1371/journal.pone.0232965.
  • Yan H, Romero-L´opez M, Benitez L, Di K, Frieboes HB, Hughes CCW, Bota DA, Lowengrub JS. 3D mathematical modeling of glioblastoma suggests that transdifferentiated vascular endothelial cells mediate resistance to current standard-of-care therapy. Cancer Res. 2017;77(15):4171–4184. doi:10.1158/0008-5472.can-16-3094.
  • Randles A, Wirsching H, Dean J, Cheng Y-K, Emerson S, Pattwell SS, Holland EC, Michor F. Computational modelling of perivascularniche dynamics for the optimization of treatment schedules for glioblastoma. Nat Biomed Eng. 2021;5(4):346–359. doi:10.1038/s41551-021-00710-3.
  • Poleszczuk J, Macklin P, Enderling H. Agent-based modeling of cancer stem cell driven solid tumor growth. Methods Mol Biol. 2016;1516(11):335–346. doi:10.1007/7651_2016_346.
  • Tzamali E, Grekas G, Marias K, Sakkalis V. Exploring the competition between proliferative and invasive cancer phenotypes in a continuous spatial model. PLOS One. 2014 08;9(8):1–12. 10.1371/journal.pone.0103191
  • Demetriades M, Zivanovic M, Hadjicharalambous M, Ioannou E, Ljujic B, Vucicevic K, Ivosevic Z, Dagovic A, Milivojevic N, Kokkinos O, et al. Interrogating and quantifying in vitro cancer drug pharmacodynamics via agent-based and bayesian monte carlo modelling. Pharmaceutics. 2022; 14(4):749. doi:10.3390/pharmaceutics14040749.
  • Barde S. Direct calibration and comparison of agent-based herding models of financial markets.School Econ Discuss Pap. 2015. http://hdl.handle.net/10419/129998
  • Lamperti F, Roventini A, Sani A. Agent-based model calibration using machine learning surrogates. J Econ Dyn Control. 2018;90:366–389. https://www.sciencedirect.com/science/article/pii/S0165188918301088
  • Singh K, Ahn CW, Paik E, Bae JW, Lee CH. A micro-level data-calibrated agent-based model: the synergy between microsimulation and agent-based modeling. Artif Life. 2018;24(2):128–148. doi:10.1162/ARTL_a_00260.
  • Niida A, Hasegawa T, Miyano S, Bongard J. Sensitivity analysis of agent-based simulation utilizing massively parallel computation and interactive data visualization. PLOS One. 2019;14(3):e0210678. doi:10.1371/journal.pone.0210678.
  • Amaran S, Sahinidis NV, Sharda B, Bury SJ. Simulation optimization: a review of algorithms and applications. 4OR. 2014;12(4):301–333. https://link.springer.com/article/10.1007/s10288-014-0275-2.
  • Akasiadis C, Ponce-de Leon M, Montagud A, Michelioudakis E, Atsidakou A, Alevizos E, Artikis A, Valencia A, Paliouras G. Parallel model exploration for tumor treatment simulations. Comput Intell. 2022;38(4):1379–1401. https://onlinelibrary.wiley.com/doi/abs/10.1111/coin.12515
  • Cess CG, Finley SD, Mendes P. Calibrating agent-based models to tumor images using representation learning. PLOS Comput Biol. 2023;19(4):e1011070. doi:10.1371/journal.pcbi.1011070.
  • Rutter CM, Ozik J, DeYoreo M, Collier N. Microsimulation model calibration using incremental mixture approximate Bayesian computation. Ann Appl Stat. 2019;13(4):2189. doi:10.1214/19-aoas1279.
  • Beik SP, Harris LA, Kochen MA, Sage J, Quaranta V, Lopez CF. Unified tumor growth mechanisms from multimodel inference and dataset integration. PLOS Comput Biol. 2023;19(7):e1011215. doi:10.1371/journal.pcbi.1011215.
  • Morvan G Multi-level agent-based modeling - a literature survey; 2013. https://hal.science/hal-03331933.
  • Athale C, Mansury Y, Deisboeck TS. Simulating the impact of a molecular ‘decisionprocess’ on cellular phenotype and multicellular patterns in brain tumors. J Theor Biol. 2005;233(4):469–481. https://www.sciencedirect.com/science/article/pii/S0022519304004977
  • Deisboeck TS, Wang Z, Macklin P, Cristini V. Multiscale cancer modeling. Annu Rev Biomed Eng. 2011;13(1):127–155. PMID: 21529163. doi:10.1146/annurev-bioeng-071910-124729.
  • Stamatakos G, Graf N. Multiscale cancer modeling and in silico oncology: emerging computational frontiers in basic and translational cancer research. J bioeng biomedi sci. 2013;3(2):e114. doi:10.4172/2155-9538.1000e114.
  • Walpole J, Papin JA, Peirce SM. Multiscale computational models of complex biological systems. Annu Rev Biomed Eng. 2013;15(1):137–154. PMID: 23642247. doi:10.1146/annurev-bioeng-071811-150104.
  • Montagna S, Omicini A, Ricci A A multiscale agent-based model of morphogenesis in biological systems. In: Omicini A Viroli M, editors Proceedings of the 11th WOA 2010 Workshop, Dagli Oggetti Agli Agenti, Rimini, Italy, (CEUR Workshop Proceedings; Vol. 621). CEUR-WS.org; 2010 2010 September 5-7 p. 23–29. https://ceur-ws.org/Vol-621/paper04.pdf.
  • Zhang L, Jiang B, Wu Y, Strouthos C, Sun PZ, Su J, Zhou X. Developing a multiscale, multi-resolution agent-based brain tumor model by graphics processing units. Theor Biol Med Model. 2011;8(1):46. doi:10.1186/1742-4682-8-46.
  • Cai Y, Wu J, Xu S, Li Z. 2013. A hybrid cellular automata model of multicellular tumour spheroid growth in hypoxic microenvironment. J Appl Math. 2013:1–10. doi:10.1155/2013/519895.
  • Alfonso J, Schaadt N, Sch¨onmeyer R, Brieu N, Forestier G, Wemmert C, Feuerhake F, Hatzikirou H. In-silico insights on the prognostic potential of immune cell infiltration patterns in the breast lobular epithelium. Sci Rep. 2016;6(1):33322. doi:10.1038/srep33322.
  • Letort G, Montagud A, Stoll G, Heiland R, Barillot E, Macklin P, Zinovyev A, Calzone L. PhysiBoSS: a multi-scale agent-based modelling framework integrating physical dimension and cell signalling. Bioinformatics. 2018 08;35(7):1188–1196. doi:10.1093/bioinformatics/bty766
  • Pally D, Pramanik D, Bhat R. 2019. An interplay between reaction-diffusion and cell-matrix adhesion regulates multiscale invasion in early breast carcinomatosis. Front Physiol. 10:10. https://www.frontiersin.org/articles/10.3389/fphys.2019.00790.
  • Sfakianakis N, Madzvamuse A, Chaplain M. A hybrid multiscale model for cancer invasion of the extracellular matrix. Multiscale Model Simul. 2020;18(2):824–850. doi:10.1137/18M1189026.
  • Macnamara CK, Caiazzo A, Ramis-Conde I, Chaplain MAJ. 2020. Computational modelling and simulation of cancer growth and migration within a 3d heterogeneous tissue: the effects of fibre and vascular structure. J Comput Sci. 40:101067. https://www.sciencedirect.com/science/article/pii/S1877750319305691.
  • Ponce-de Leon M, Montagud A, Akasiadis C, Schreiber J, Ntiniakou T, Valencia A. Optimizing dosage-specific treatments in a multi-scale model of a tumor growth. Front Mol Biosci. 2022;9. https://www.frontiersin.org/articles/10.3389/fmolb.2022.836794
  • Ruscone M, Montagud A, Chavrier P, Destaing O, Bonnet I, Zinovyev A, Barillot E, Noël V, Calzone L. Multiscale model of the different modes of cancer cell invasion. Bioinformatics. 2023;39(6):btad374. https://doi.org/10.1093/bioinformatics/btad374.
  • Tsingos E, Bakker BH, Keijzer KA, Hupkes HJ, Merks RMH. Hybrid cellular potts and beadspring modeling of cells in fibrous extracellular matrix. Biophysic J. 2023;122(13):2609–2622. https://www.sciencedirect.com/science/article/pii/S0006349523003259
  • Miller HA, Miller DM, van Berkel VH, Frieboes HB. Evaluation of lung cancer patient response to first-line chemotherapy by integration of tumor core biopsy metabolomics with multiscale modeling. Ann Biomed Eng. 2023;51(4):820–832. doi:10.1007/s10439-022-03096-8.
  • Mao X, McManaway S, Jaiswal J, Patel PB, Wilson WR, Hicks KO, Bogle G. An agent-based model for drug-radiation interactions in the tumour microenvironment: hypoxia-activated prodrug SN30000 in multicellular tumour spheroids. PLOS Comput Biol. 2018;14(10):1–30. doi:10.1371/journal.pcbi.1006469.
  • Axenie C, Kurz D GLUECK: growth pattern learning for unsupervised extraction of cancer kinetics. In: Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track: European Conference, ECML PKDD 2020; Springer; 2021. p. 171–186. https://link.springer.com/chapter/10.1007/3-030-67670-4_11.
  • Cesaro G, Milia M, Baruzzo G, Finco G, Morandini F, Lazzarini A, Alotto P, da Cunha Carvalho de Miranda NF, Trajanoski Z, Finotello F, et al. MAST: a hybrid multi-agent spatio-temporal model of tumor microenvironment informed using a data-driven approach. Bioinf Adv. 2022 12;2(1):vbac092. doi:10.1093/bioadv/vbac092
  • Miller HA, Lowengrub J, Frieboes HB. Modeling of tumor growth with input from patient-specific metabolomic data. Ann Biomed Eng. 2022;50(3):314–329. doi:10.1007/s10439-022-02904-5.
  • Norton KA, Jin K, Popel AS. Modeling triple-negative breast cancer heterogeneity: effects of stromal macrophages, fibroblasts and tumor vasculature. J Theor Biol. 2018;452:56–68. https://www.sciencedirect.com/science/article/pii/S0022519318302297
  • Macklin P, Edgerton ME, Thompson AM, Cristini V. 2012. Patient-calibrated agent-based modelling of ductal carcinoma in situ (dcis): from microscopic measurements to macroscopic predictions of clinical progression. J Theor Biol. 301:122–140. doi:10.1016/j.jtbi.2012.02.002.
  • Börlin CS, Lang V, Hamacher-Brady A, Brady NR. Agent-based modeling of autophagy reveals emergent regulatory behavior of spatio-temporal autophagy dynamics. Cell Commun Signaling. 2014;12(1):1–16. doi:10.1186/s12964-014-0056-8.
  • Jalalimanesh A, Haghighi HS, Ahmadi A, Soltani M. 2017. Simulation-based optimization of radiotherapy: agent-based modeling and reinforcement learning. Math Comput Simul. 133:235–248. doi:10.1016/j.matcom.2016.05.008.
  • West J, Robertson-Tessi M, Anderson AR. Agent-based methods facilitate integrative science in cancer. Trends Cell Biol. 2022;33(4):300–311. doi:10.1016/j.tcb.2022.10.006.
  • Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable ai: a review of machine learning interpretability methods. Entropy. 2020;23(1):18. https://www.mdpi.com/1099-4300/23/1/18
  • Pereda M, Santos JI, Gal´an JM. A brief introduction to the use of machine learning techniques in the analysis of agent-based models. In: Hern´andez Ceditor. Advances in management engineering. Springer; pp. 179–186. P. 2017. Lecture Notes in Management and Industrial Engineering.10.1007/978-3-319-55889-9_11
  • Retzlaff J, Lai X, Berking C, Vera J. 2023. Integration of transcriptomics data into agent-based models of solid tumor metastasis. Comput Struct Biotechnol J. 21:1930–1941. doi:10.1016/j.csbj.2023.02.014.
  • Breitwieser L, Hesam A, Rademakers F, Luna JG, Mutlu O. High-performance and scalable agentbased simulation with BioDynaMo. In: Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming; 2023. p. 174–188. https://dl.acm.org/doi/10.1145/3572848.3577480.
  • Clasc`a M, Garcia-Gasulla M, Montagud A, Carbonell Caballero J, Valencia, A. Lessons learned from a performance analysis and optimization of a multiscale cellular simulation. In: Proceedings of the Platform for Advanced Scientific Computing Conference; 2023. p. 1–10. 10.1145/3592979.3593403.
  • Verbraeken J, Wolting M, Katzy J, Kloppenburg J, Verbelen T, Rellermeyer JS. A survey on distributed machine learning. ACM Comput Surv. 2020;53(2):1–33. doi:10.1145/3377454.
  • Cogno N, Bauer R, Durante M. An agent-based model of radiation-induced lung fibrosis. Int J Mol Sci. 2022;23(22):13920. doi:10.3390/ijms232213920.
  • Karniadakis G, Kevrekidis I, Lu L, Perdikaris P, Wang S, Yang L. Physics-informed machine learning. Nat Rev Phys. 2021;3(6):422–440. https://www.nature.com/articles/s42254-021-00314-5
  • Wood SN. Fast stable direct fitting and smoothness selection for generalized additive models. J R Stat Soc. 2008;70(3):495–518. doi:10.1111/j.1467-9868.2007.00646.x.
  • Sivakumar N, Mura C, Peirce SM. 2022. Innovations in integrating machine learning and agentbased modeling of biomedical systems. Front Syst Biol. 2:959665. doi:10.3389/fsysb.2022.959665.
  • Spolaor S, Nobile MS, Mauri G, Cazzaniga P, Besozzi D. Coupling mechanistic approaches and fuzzy logic to model and simulate complex systems. IEEE Trans Fuzzy Syst. 2019;28(8):1748–1759. https://ieeexplore.ieee.org/document/8732364
  • Glen CM, Kemp ML, Voit EO, Castiglione F. Agent-based modeling of morphogenetic systems: Advantages and challenges. PLOS Comput Biol. 2019;15(3):e1006577. doi:10.1371/journal.pcbi.1006577.
  • Ward JA, Evans AJ, Malleson NS. Dynamic calibration of agent-based models using data assimilation. R Soc Open Sci. 2016;3(4):150703. doi:10.1098/rsos.150703.
  • Moon IC, Kim D, Yun TS, Bae, JW and Kang, DO and Paik, E. Data-driven automatic calibration for validation of agent-based social simulations. In: 2018 IEEE international conference on systems, man, and cybernetics (SMC); IEEE; 2018. p. 1605–1610. https://ieeexplore.ieee.org/document/8616274.
  • Axenie C, Scherr W, Wieder A, Torres AS, Meng Z, Du X, Sottovia P, Foroni D, Grossi M, Bortoli S. et al. 2022. Fuzzy modeling and inference for physics-aware road vehicle driver behavior model calibration. SSRN 4195952. doi:10.2139/ssrn.4195952.
  • Kurz D, S´anchez CS, Axenie C. Data-driven discovery of mathematical and physical relations in oncology data using human-understandable machine learning. Front Artif Intell. 2021;4:713690. doi:10.3389/frai.2021.713690.
  • Troost C, Huber R, Bell A, van Delden H, Filatova T, Le QB, Lippe M, Niamir L, Polhill JG, Sun Z, et al. How to keep it adequate: a protocol for ensuring validity in agent-based simulation. Environ Model & Soft. 2023;159:105559. doi:10.1016/j.envsoft.2022.105559.
  • Drovandi CC, Pettitt AN. Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics. 2011;67(1):225–233. doi:10.1111/j.1541-0420.2010.01410.x.
  • Carr MJ, Simpson MJ, Drovandi C. Estimating parameters of a stochastic cell invasion model with fluorescent cell cycle labelling using approximate Bayesian computation. Interface Focus. 2021;18(182):20210362. doi:10.1098/rsif.2021.0362.
  • Jørgensen A, Ghosh A, Sturrock M, Shahrezaei V. Efficient Bayesian inference for stochastic agent-based models. PLOS Comput Biol. 2022;18(10):e1009508. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009508.
  • Wang X, Jenner AL, Salomone R, Drovandi C. Calibration of a Voronoi cell-based model for tumour growth using approximate Bayesian computation. bioRxiv. 2022;2022–2029.10.1101/2022.09.13.507714
  • Domingos P. The role of Occam’s razor in knowledge discovery. Data mining and knowledge discovery. Data Min Knowl Discov. 1999;3(4):409–425. doi:10.1023/A:1009868929893.
  • Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model complexity and fit. J Royal Stat Soci Series B: Stat Methodol. 2002;64(4):583–639. https://rss.onlinelibrary.wiley.com/doi/10.1111/1467-9868.00353.
  • Sun Z, Lorscheid I, Millington JD, Lauf S, Magliocca NR, Groeneveld J, Balbi S, Nolzen H, Müller B, Schulze J, Buchmann CM. Simple or complicated agent-based models? A complicated issue. Environ Modell Software. 2016;86:56–67. https://www.sciencedirect.com/science/article/pii/S1364815216306041.
  • Mandes A, Winker P. Complexity and model comparison in agent based modeling of financial markets. J Econ Interact Coord. 2017;12(3):469–506. doi:10.1007/s11403-016-0173-0.
  • Onggo BS, Yilmaz L, Klu¨gl F, Terano T, Macal CM. Credible agent-based simulation–an illusion or only a step away. In: 2019 Winter Simulation Conference (WSC), December 8-11, National Harbor, Maryland, USA; IEEE; 2019. p. 273–284.
  • Ten Broeke G, Van Voorn G, Ligtenberg A. Which sensitivity analysis method should I use for my agent-based model? J Artif Soc Soc Simul. 2016;19(1):5. doi:10.18564/jasss.2857.
  • Gonzalez-de Aledo P, Vladimirov A, Manca M, Baugh J, Asai R, Kaiser M, Bauer R. 2018. An optimization approach for agentbased computational models of biological development. Adv Eng Software. 121:262–275. doi:10.1016/j.advengsoft.2018.03.010.
  • Zuse H. Software complexity: measures and methods Vol. 4. Berlin, New York: Walter de Gruyter GmbH & Co KG; 2019.
  • Angione C, Silverman E, Yaneske E, Bouffanais R. Using machine learning as a surrogate model for agent-based simulations. PLOS One. 2022;17(2):e0263150. https://doi.org/10.1371/journal.pone.0263150.
  • Axenie C, Kurz D. Chimera: combining mechanistic models and machine learning for personalized chemotherapy and surgery sequencing in breast cancer. Mathematical and computational oncology: second international symposium, ISMCO 2020. Springer;2020. pp. 13–24. https://link.springer.com/chapter/10.1007/978-3-030-64511-3_2
  • Metzcar J, Jutzeler CR, Macklin P, Köhn-Luque A, Brüningk SC, A review of mechanistic learning in mathematical oncology. Front Immunol. 2024 15; 15. 10.3389/fimmu.2024.1363144
  • Markowetz F. All models are wrong and yours are useless: making clinical prediction models impactful for patients. NPJ Precis Oncol. 2024;8(1):54. doi:10.1038/s41698-024-00553-6.