1,608
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

METTL14 decreases FTH1 mRNA stability via m6A methylation to promote sorafenib-induced ferroptosis of cervical cancer

, , , & ORCID Icon
Article: 2349429 | Received 12 Dec 2023, Accepted 25 Apr 2024, Published online: 13 May 2024

References

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–14. doi:10.3322/caac.21660.
  • Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J. 2022; 135(5):584–590. doi:10.1097/CM9.0000000000002108.
  • Bruni L, Serrano B, Roura E, Alemany L, Cowan M, Herrero R, Poljak M, Murillo R, Broutet N, Riley LM, et al. Cervical cancer screening programmes and age-specific coverage estimates for 202 countries and territories worldwide: a review and synthetic analysis. Lancet Global Health. 2022; 10(8):e1115–e27. doi:10.1016/S2214-109X(22)00241-8.
  • Rizzuto I, Otter SJ, Bharathan R, Stewart A. Vascular endothelial growth factor (VEGF) inhibitors for the treatment of metastatic and recurrent cervical cancer. Cochrane Database Syst Rev. 2020. 10.1002/14651858.CD013605.
  • Wang J, Lv F, Sun T, Zhao S, Chen H, Liu Y, Liu Z. Sorafenib nanomicelles effectively shrink tumors by vaginal administration for preoperative chemotherapy of cervical cancer. Nanomaterials. 2021;11(12):3271. doi:10.3390/nano11123271.
  • Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S, Liu T. The critical role of RNA m6A methylation in cancer. Cancer Res. 2019;79(7):1285–1292. doi:10.1158/0008-5472.CAN-18-2965.
  • Paramasivam A, Priyadharsini JV. RNA N6-methyladenosine: a new player in autophagy-mediated anti-cancer drug resistance. Br J Cancer. 2021;124(10):1621–1622. doi:10.1038/s41416-021-01314-z.
  • Ma X, Li Y, Wen J, Zhao Y. m6A RNA methylation regulators contribute to malignant development and have a clinical prognostic effect on cervical cancer. Am J Transl Res. 2020;12(12):8137–8146.
  • Zhou H, Yin K, Zhang Y, Tian J, Wang S. The RNA m6A writer METTL14 in cancers: roles, structures, and applications. Biochimica Et Biophysica Acta (BBA) - Rev Cancer. 2021;1876(2):188609. doi:10.1016/j.bbcan.2021.188609.
  • Geng F, Fan M-J, Li J, Liang S-M, C-Y L, Li N. Knockdown of METTL14 inhibits the growth and invasion of cervical cancer. Transl Cancer Res. 2019;8(6):2307. doi:10.21037/tcr.2019.09.48.
  • Hu C, Liu T, Xu Y, Han C, Yang S, Yang K. METTL14 promotes the proliferation and migration of cervical cancer cells by up-regulating m(6)A myc expression. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2022;38(2):131–137.
  • Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266–282. doi:10.1038/s41580-020-00324-8.
  • Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31(2):107–125. doi:10.1038/s41422-020-00441-1.
  • Shen Z, Song J, Yung BC, Zhou Z, Wu A, Chen X. Emerging strategies of cancer therapy based on ferroptosis. Adv Mater. 2018;30(12):1704007. doi:10.1002/adma.201704007.
  • Yang X, Yin F, Liu Q, Ma Y, Zhang H, Guo P, Wen W, Guo X, Wu Y, Yang Z, et al. Ferroptosis-related genes identify tumor immune microenvironment characterization for the prediction of prognosis in cervical cancer. Ann Transl Med. 2022; 10(2):123. doi:10.21037/atm-21-6265.
  • Wang C, Zeng J, L-J L, Xue M, S-L H. Cdc25A inhibits autophagy-mediated ferroptosis by upregulating ErbB2 through PKM2 dephosphorylation in cervical cancer cells. Cell Death Disease. 2021;12(11):1055. doi:10.1038/s41419-021-04342-y.
  • Fan Z, Yang G, Zhang W, Liu Q, Liu G, Liu P, Xu L, Wang J, Yan Z, Han H, et al. Hypoxia blocks ferroptosis of hepatocellular carcinoma via suppression of METTL14 triggered YTHDF2-dependent silencing of SLC7A11. J Cell Mol Med. 2021; 25(21):10197–10212. doi:10.1111/jcmm.16957.
  • Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F, Wang Q, Wang S, Rong D, Reiter FP, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther. 2020; 5(1):87. doi:10.1038/s41392-020-0187-x.
  • Li Q, Chen K, Zhang T, Jiang D, Chen L, Jiang J, Zhang C, Li S. 2023. Understanding sorafenib-induced ferroptosis and resistance mechanisms: implications for cancer therapy. Eur J Pharmacol. 955:175913. doi:10.1016/j.ejphar.2023.175913.
  • Ratnadiwakara M, Anko ML. mRNA stability assay using transcription inhibition by actinomycin D in mouse pluripotent stem cells. Bio Protoc. 2018;8(21):e3072. doi:10.21769/BioProtoc.3072.
  • Wenbin H, Kunling C, Yishi L, Donghui Z, Yuan C, Liuran L, Huang W, He G, Liao H, Cai L, et al. ABCC5 facilitates the acquired resistance of sorafenib through the inhibition of SLC7A11-induced ferroptosis in hepatocellular carcinoma. Neoplasia. 2021; 23(12):1227–1239. doi:10.1016/j.neo.2021.11.002.
  • Jia L, Ji Ling J, Yi Mei C, Wei Qi LJJPCR. KLF2 inhibits colorectal cancer progression and metastasis by inducing ferroptosis via the PI3K/AKT signaling pathway. J Pathol: Clin Res. 2023;9(5):423–435. doi:10.1002/cjp2.325.
  • Hua S, Chao P, Yang LJFCDB. Regulation of ferroptosis by PI3K/Akt signaling pathway: a promising therapeutic axis in cancer. 2024; 12.
  • Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet. 2019;393(10167):169–182. doi:10.1016/S0140-6736(18)32470-X.
  • Deng L-J, Deng W-Q, Fan S-R, Chen M-F, Qi M, Lyu W-Y, Qi Q, Tiwari AK, Chen J-X, Zhang D-M, et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer. 2022; 21(1):52. doi:10.1186/s12943-022-01510-2.
  • Xie Q, Li Z, Luo X, Wang D, Zhou Y, Zhao J, Gao S, Yang Y, Fu W, Kong L, et al. piRNA-14633 promotes cervical cancer cell malignancy in a METTL14-dependent m6A RNA methylation manner. J Transl Med. 2022; 20(1):51. doi:10.1186/s12967-022-03257-2.
  • Tang D, Cao F, Yan C, Cui J, Guo X, Cheng L, Li L, Li Y-L, Ma J-M, Fang K, et al. Acinar cell-derived extracellular vesicle MiRNA-183-5p aggravates acute pancreatitis by promoting M1 macrophage polarization through downregulation of FoxO1. Front Immunol. 2022;13:869207. doi:10.3389/fimmu.2022.869207.
  • Plays M, Müller S, Rodriguez R. Chemistry and biology of ferritin. Metallomics. 2021;13(5). doi:10.1093/mtomcs/mfab021.
  • Di Sanzo M, Quaresima B, Biamonte F, Palmieri C, Faniello MC. FTH1 pseudogenes in cancer and cell metabolism. Cells. 2020;9(12):2554. doi:10.3390/cells9122554.
  • Zhu M, Shen W, Wang Q, Zhou X, Wang J, Wang T, Zhang J. DARS-AS1 recruits METTL3/METTL14 to bind and enhance DARS mRNA m6A modification and translation for cytoprotective autophagy in cervical cancer. RNA Biol. 2022;19(1):751–763. doi:10.1080/15476286.2022.2079889.
  • Kong N, Chen X, Feng J, Duan T, Liu S, Sun X, Chen P, Pan T, Yan L, Jin T, et al. Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm Sin B. 2021; 11(12):4045–4054. doi:10.1016/j.apsb.2021.03.036.
  • Tian Y, Lu J, Hao X, Li H, Zhang G, Liu X, et al. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics. 2020;17:1796–1812. doi:10.1007/s13311-020-00929-z.
  • Zhang R, Pan T, Xiang Y, Zhang M, Xie H, Liang Z, Chen B, Xu C, Wang J, Huang X, et al. Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioact Mater. 2022;13:23–36. doi:10.1016/j.bioactmat.2021.11.013.
  • Hu Z-W, Wen Y-H, Ma R-Q, Chen L, Zeng X-L, Wen W-P, Sun W. Ferroptosis driver SOCS1 and suppressor FTH1 independently correlate with M1 and M2 macrophage infiltration in head and neck squamous cell carcinoma. Front Cell Dev Biol. 2021;9. doi:10.3389/fcell.2021.727762.