1,309
Views
0
CrossRef citations to date
0
Altmetric
Review

T-Cell redirecting bispecific antibodies: a review of a novel class of immuno-oncology for advanced prostate cancer

, , , , , & ORCID Icon show all
Article: 2356820 | Received 07 Jan 2024, Accepted 14 May 2024, Published online: 27 May 2024

References

  • Rawla P. Epidemiology of Prostate Cancer. World J Oncol. 2019;10(2):63–12. doi:10.14740/wjon1191.
  • Surveillance Research Program, National Cancer Institute SEER*Stat software. 2023. https://seer.cancer.gov/statfacts/html/prost.html.
  • Rosario E, Rosario DJ. Localized prostate cancer. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.
  • Mottet N, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, Fanti S, Fossati N, Gandaglia G, Gillessen S, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer—2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2021;79(2):243–262. doi:10.1016/j.eururo.2020.09.042.
  • Maggi M, Cowan JE, Fasulo V, Washington SL, Lonergan PE, Sciarra A, Nguyen HG, Carroll PR. The long-term risks of metastases in men on active surveillance for early stage prostate cancer. J Urol. 2020;204(6):1222–1228. doi:10.1097/JU.0000000000001313.
  • Chandrasekar T, Yang JC, Gao AC, Evans CP. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol. 2015;4(3):365–380. doi:10.3978/j.issn.2223-4683.2015.05.02.
  • Desai MM, Cacciamani GE, Gill K, Zhang J, Liu L, Abreu A, Gill IS. Trends in incidence of metastatic prostate cancer in the US. JAMA Netw Open. 2022;5(3):e222246. doi:10.1001/jamanetworkopen.2022.2246.
  • Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fosså SD, Chodacki A, Wiechno P, Logue J, Seke M, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–223. doi:10.1056/NEJMoa1213755.
  • Bauckneht M, Rebuzzi SE, Signori A, Frantellizzi V, Murianni V, Lodi Rizzini E, Mascia M, Lavelli V, Donegani MI, Ponzano M, et al. The prognostic power of inflammatory indices and clinical factors in metastatic castration-resistant prostate cancer patients treated with radium-223 (BIO-Ra study). Eur J Nucl Med Mol Imaging. 2022;49(3):1063–1074. doi:10.1007/s00259-021-05550-6.
  • Corn PG, Agarwal N, Araujo JC, Sonpavde G. Taxane-based combination therapies for metastatic prostate cancer. Eur Urol Focus. 2019;5(3):369–380. doi:10.1016/j.euf.2017.11.009.
  • Sartor O, de Bono J, Chi KN, Fizazi K, Herrmann K, Rahbar K, Tagawa ST, Nordquist LT, Vaishampayan N, El-Haddad G, et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385(12):1091–1103. doi:10.1056/NEJMoa2107322.
  • Venkatachalam S, McFarland TR, Agarwal N, Swami U. Immune checkpoint inhibitors in prostate cancer. Cancers Basel. 2021;13(9):2187. doi:10.3390/cancers13092187.
  • Lanka SM, Zorko NA, Antonarakis ES, Barata PC. Metastatic castration-resistant prostate cancer, immune checkpoint inhibitors, and beyond. Curr Oncol. 2023;30(4):4246–4256. doi:10.3390/curroncol30040323.
  • Simão DC, Zarrabi KK, Mendes JL, Luz R, Garcia JA, Kelly WK, Barata PC. Bispecific T-Cell engagers therapies in solid tumors: focusing on prostate cancer. Cancers. 2023;15(5):1412. doi:10.3390/cancers15051412.
  • Zarrabi KK, Narayan V, Mille PJ, Zibelman MR, Miron B, Bashir B, Kelly WK. Bispecific PSMA antibodies and CAR-T in metastatic castration-resistant prostate cancer. Ther Adv Urol. 2023;15:17562872231182219. doi:10.1177/17562872231182219.
  • Anassi E, Ndefo UA. Sipuleucel-T (provenge) injection: the first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. P T. 2011;36(4):197–202.
  • Handy CE, Antonarakis ES. Sipuleucel-T for the treatment of prostate cancer: novel insights and future directions. Future Oncol. 2018;14(10):907–917. doi:10.2217/fon-2017-0531.
  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–422. doi:10.1056/NEJMoa1001294.
  • Perera MPJ, Thomas PB, Risbridger GP, Taylor R, Azad A, Hofman MS, Williams ED, Vela I. Chimeric antigen receptor T-Cell therapy in metastatic castrate-resistant prostate cancer. Cancers Basel. 2022;14(3):503. doi:10.3390/cancers14030503.
  • Tschernia NP, Norberg SM, Gulley JL. CAR T cells reach clinical milestone in prostate cancer. Nat Med. 2022;28(4):635–636. doi:10.1038/s41591-022-01742-1.
  • Schepisi G, Cursano MC, Casadei C, Menna C, Altavilla A, Lolli C, Cerchione C, Paganelli G, Santini D, Tonini G, et al. CAR-T cell therapy: a potential new strategy against prostate cancer. J Immunother Cancer. 2019;7(1):258. doi:10.1186/s40425-019-0741-7.
  • Wolf P, Alzubi J, Gratzke C, Cathomen T. The potential of CAR T cell therapy for prostate cancer. Nat Rev Urol. 2021;18(9):556–571. doi:10.1038/s41585-021-00488-8.
  • Zhang X, Zhu L, Zhang H, Chen S, Xiao Y. CAR-T cell therapy in hematological malignancies: current opportunities and challenges. Front Immunol. 2022;13:927153. doi:10.3389/fimmu.2022.927153.
  • Narayan V, Barber-Rotenberg JS, Jung I-Y, Lacey SF, Rech AJ, Davis MM, Hwang W-T, Lal P, Carpenter EL, Maude SL, et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat Med. 2022;28(4):724–734. doi:10.1038/s41591-022-01726-1.
  • Slovin SF, Dorff TB, Falchook GS, Wei XX, Gao X, McKay RR, Oh DY, Wibmer AG, Spear MA, McCaigue J, et al. Phase 1 study of P-PSMA-101 CAR-T cells in patients with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2022;40(6_suppl):98–98. doi:10.1200/JCO.2022.40.6_suppl.098.
  • Tian Z, Liu M, Zhang Y, Wang X. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J Hematol Oncol. 2021;14(1):75. doi:10.1186/s13045-021-01084-4.
  • Omer MH, Shafqat A, Ahmad O, Alkattan K, Yaqinuddin A, Damlaj M. Bispecific antibodies in hematological malignancies: a scoping review. Cancers Basel. 2023;15(18):4550. doi:10.3390/cancers15184550.
  • Huehls AM, Coupet TA, Sentman CL. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol. 2015;93(3):290–296. doi:10.1038/icb.2014.93.
  • Einsele H, Borghaei H, Orlowski RZ, Subklewe M, Roboz GJ, Zugmaier G, Kufer P, Iskander K, Kantarjian HM. The BiTE (bispecific T-cell engager) platform: Development and future potential of a targeted immuno-oncology therapy across tumor types. Cancer. 2020;126(14):3192–3201. doi:10.1002/cncr.32909.
  • Ross SL, Sherman M, McElroy PL, Lofgren JA, Moody G, Baeuerle PA, Coxon A, Arvedson T. Bispecific T cell engager (BiTE®) antibody constructs can mediate bystander tumor cell killing. PLoS One. 2017;12(8):e0183390. doi:10.1371/journal.pone.0183390.
  • Wang Q, Chen Y, Park J, Liu X, Hu Y, Wang T, McFarland K, Betenbaugh MJ. Design and production of bispecific antibodies. Antibodies (Basel). 2019;8(3):43. doi:10.3390/antib8030043.
  • Stultz J, Fong L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2021;24(3):697–717. doi:10.1038/s41391-021-00340-5.
  • Wu W, Wang X, Le W, Lu C, Li H, Zhu Y, Chen X, An W, Xu C, Wu Q, et al. Immune microenvironment infiltration landscape and immune-related subtypes in prostate cancer. Front Immunol. 2022;13:1001297. doi:10.3389/fimmu.2022.1001297.
  • Dong L, Myers KV, Pienta KJ. Understanding the tumor-immune microenvironment in prostate cancer. Curr Opin Oncol. 2021;33(3):231–237. doi:10.1097/CCO.0000000000000719.
  • Barata P, Agarwal N, Nussenzveig R, Gerendash B, Jaeger E, Hatton W, Ledet E, Lewis B, Layton J, Babiker H, et al. Clinical activity of pembrolizumab in metastatic prostate cancer with microsatellite instability high (MSI-H) detected by circulating tumor DNA. J Immunother Cancer. 2020;8(2). doi:10.1136/jitc-2020-001065.
  • Marcus L, Fashoyin-Aje LA, Donoghue M, Yuan M, Rodriguez L, Gallagher PS, Philip R, Ghosh S, Theoret MR, Beaver JA, et al. FDA approval summary: pembrolizumab for the treatment of tumor mutational burden–high solid tumors. Clin Cancer Res. 2021;27(17):4685–4689. doi:10.1158/1078-0432.CCR-21-0327.
  • Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord J-P, Geva R, Gottfried M, Penel N, Hansen AR, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair–deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38(1):1–10. doi:10.1200/JCO.19.02105.
  • Westdorp H, Sköld AE, Snijer BA, Franik S, Mulder SF, Major PP, Foley R, Gerritsen WR, de Vries IJM. Immunotherapy for prostate cancer: lessons from responses to tumor-associated antigens. Front Immunol. 2014;5:191. doi:10.3389/fimmu.2014.00191.
  • Li H, Er Saw P, Song E. Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cell Mol Immunol. 2020;17(5):451–461. doi:10.1038/s41423-020-0417-8.
  • Ilyas S, Yang JC. Landscape of tumor antigens in T cell immunotherapy. J Immunol. 2015;195(11):5117–5122. doi:10.4049/jimmunol.1501657.
  • Leko V, Rosenberg SA. Identifying and targeting human tumor antigens for T cell-based immunotherapy of solid tumors. Cancer Cell. 2020;38(4):454–472. doi:10.1016/j.ccell.2020.07.013.
  • Zamora AE, Crawford JC, Thomas PG. Hitting the target: how T cells detect and eliminate tumors. J Immunol. 2018;200(2):392–399. doi:10.4049/jimmunol.1701413.
  • Siu D. Cancer therapy using tumor-associated antigens to reduce side effects. Clin Exp Med. 2009;9(3):181–198. doi:10.1007/s10238-009-0047-z.
  • Sheehan B, Guo C, Neeb A, Paschalis A, Sandhu S, de Bono JS. Prostate-specific membrane antigen biology in lethal prostate cancer and its therapeutic implications. Eur Urol Focus. 2022;8(5):1157–1168. doi:10.1016/j.euf.2021.06.006.
  • Kiessling A, Wehner R, Füssel S, Bachmann M, Wirth MP, Schmitz M. Tumor-associated antigens for specific immunotherapy of prostate cancer. Cancers. 2012;4(1):193–217. doi:10.3390/cancers4010193.
  • Mhawech-Fauceglia P, Zhang S, Terracciano L, Sauter G, Chadhuri A, Herrmann FR, Penetrante R. Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: an immunohistochemical study using multiple tumour tissue microarray technique. Histopathology. 2007;50(4):472–483. doi:10.1111/j.1365-2559.2007.02635.x.
  • Gu Z, Thomas G, Yamashiro J, Shintaku IP, Dorey F, Raitano A, Witte ON, Said JW, Loda M, Reiter RE, et al. Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene. 2000;19(10):1288–1296. doi:10.1038/sj.onc.1203426.
  • Reiter RE, Gu Z, Watabe T, Thomas G, Szigeti K, Davis E, Wahl M, Nisitani S, Yamashiro J, Le Beau MM, et al. Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci U S A. 1998;95(4):1735–1740. doi:10.1073/pnas.95.4.1735.
  • Xu M, Evans L, Bizzaro CL, Quaglia F, Verrillo CE, Li L, Stieglmaier J, Schiewer MJ, Languino LR, Kelly WK, et al. STEAP1–4 (six-transmembrane epithelial antigen of the prostate 1–4) and their clinical implications for prostate cancer. Cancers Basel. 2022;14(16):4034. doi:10.3390/cancers14164034.
  • Timmermand OV, Elgqvist J, Beattie KA, Örbom A, Larsson E, Eriksson SE, Thorek DLJ, Beattie BJ, Tran TA, Ulmert D, et al. Preclinical efficacy of hK2 targeted [177 Lu]hu11B6 for prostate cancer theranostics. Theranostics. 2019;9(8):2129–2142. doi:10.7150/thno.31179.
  • Friedrich M, Raum T, Lutterbuese R, Voelkel M, Deegen P, Rau D, Kischel R, Hoffmann P, Brandl C, Schuhmacher J, et al. Regression of human prostate cancer xenografts in mice by AMG 212/BAY2010112, a novel PSMA/CD3-bispecific BiTE antibody cross-reactive with non-human primate antigens. Molecular cancer therapeutics. Mol Cancer Ther. 2012;11(12):2664–2673. doi:10.1158/1535-7163.MCT-12-0042.
  • Hummel H-D, Kufer P, Grüllich C, Deschler-Baier B, Chatterjee M, Goebeler M-E, Miller K, De Santis M, Loidl WC, Buck A, et al. Phase I study of pasotuxizumab (AMG 212/BAY 2010112), a PSMA-targeting BiTE (bispecific T-cell engager) immune therapy for metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2020;38(6_suppl):124–124. doi:10.1200/JCO.2020.38.6_suppl.124.
  • Hummel HD, Kufer P, Grüllich C, Seggewiss-Bernhardt R, Deschler-Baier B, Chatterjee M, Goebeler M-E, Miller K, de Santis M, Loidl W, et al. Pasotuxizumab, a BiTE®immune therapy for castration-resistant prostate cancer: Phase I, dose-escalation study findings. Immunotherapy. 2021;13(2):125–141. doi:10.2217/imt-2020-0256.
  • Penny HL, Hainline K, Theoharis N, Wu B, Brandl C, Webhofer C, McComb M, Wittemer-Rump S, Koca G, Stienen S, et al. Characterization and root cause analysis of immunogenicity to pasotuxizumab (AMG 212), a prostate-specific membrane antigen-targeting bispecific T-cell engager therapy. Front Immunol. 2023;14:1261070. doi:10.3389/fimmu.2023.1261070.
  • Deegen P, Thomas O, Nolan-Stevaux O, Li S, Wahl J, Bogner P, Aeffner F, Friedrich M, Liao MZ, Matthes K, et al. The PSMA-targeting half-life extended bite therapy AMG 160 has potent antitumor activity in preclinical models of metastatic castration-resistant prostate cancer. Clin Cancer Res. 2021;27(10):2928–2937. doi:10.1158/1078-0432.CCR-20-3725.
  • Bailis J, Deegen P, Thomas O, Bogner P, Wahl J, Liao M, Li S, Matthes K, Nägele V, Rau D, et al. Preclinical evaluation of AMG 160, a next-generation bispecific T cell engager (BiTE) targeting the prostate-specific membrane antigen PSMA for metastatic castration-resistant prostate cancer (mCRPC). American Society of Clinical Oncology; 2019.
  • Lueckerath K, Bailis J, Current K, Salvati M, Radu C, Czernin J. 717 AMG 160, a prostate-specific membrane antigen (PSMA)-targeted BiTE immuno-oncology therapy, is active in models of advanced prostate cancer that are resistant to radioligand therapy. J Immunother Cancer. 2020;8(Suppl 3):A429–A430.
  • Tran B, Horvath L, Dorff T, Rettig M, Lolkema MP, Machiels J-P, Rottey S, Autio K, Greil R, Adra N, et al. 609O Results from a phase I study of AMG 160, a half-life extended (HLE), PSMA-targeted, bispecific T-cell engager (BiTE®) immune therapy for metastatic castration-resistant prostate cancer (mCRPC). Annals of oncology. Ann Oncol. 2020;31:S507. doi:10.1016/j.annonc.2020.08.869.
  • Buelow B, Dalvi P, Dang K, Patel A, Johal K, Pham D, Panchal S, Liu Y, Fong L, Sartor AO, et al. TNB585.001: A multicenter, phase 1, open-label, dose-escalation and expansion study of tnb-585, a bispecific T-cell engager targeting PSMA in subjects with metastatic castrate resistant prostate cancer. J Clin Oncol. 2021;39(15_suppl):TPS5092–TPS5092. doi:10.1200/JCO.2021.39.15_suppl.TPS5092.
  • Hernandez-Hoyos G, Sewell T, Bader R, Bannink J, Chenault RA, Daugherty M, Dasovich M, Fang H, Gottschalk R, Kumer J, et al. MOR209/ES414, a novel bispecific antibody targeting PSMA for the treatment of metastatic castration-resistant prostate cancer. Mol Cancer Ther. 2016;15(9):2155–2165. doi:10.1158/1535-7163.MCT-15-0242.
  • Zhou Y, Penny HL, Kroenke MA, Bautista B, Hainline K, Chea LS, Parnes J, Mytych DT. Immunogenicity assessment of bispecific antibody-based immunotherapy in oncology. J Immunother Cancer. 2022;10(4). doi:10.1136/jitc-2021-004225.
  • Lim EA, Schweizer MT, Chi KN, Aggarwal R, Agarwal N, Gulley J, Attiyeh E, Greger J, Wu S, Jaiprasart P, et al. Phase 1 study of safety and preliminary clinical activity of JNJ-63898081, a PSMA and CD3 bispecific antibody, for metastatic castration-resistant prostate cancer. Clin Genitourin Cancer. 2023;21(3):366–375. doi:10.1016/j.clgc.2023.02.010.
  • Lim EA, Schweizer MT, Chi KN, Aggarwal RR, Agarwal N, Gulley JL, Attiyeh EF, Greger J, Wu S, Jaiprasart P, et al. Safety and preliminary clinical activity of JNJ-63898081 (JNJ-081), a PSMA and CD3 bispecific antibody, for the treatment of metastatic castrate-resistant prostate cancer (mCRPC). J Clin Oncol. 2022;40(6_suppl):279–279. doi:10.1200/JCO.2022.40.6_suppl.279.
  • Bono JSD, Fong L, Beer TM, Gao X, Geynisman DM, Burris HA III, Strauss JF, Courtney KD, Quinn DI, VanderWeele DJ, et al. Results of an ongoing phase 1/2a dose escalation study of HPN424, a tri-specific half-life extended PSMA-targeting T-cell engager, in patients with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2021;39(15_suppl):5013–5013. doi:10.1200/JCO.2021.39.15_suppl.5013.
  • Lin TY, Park JA, Long A, Guo H-F, Cheung NKV. Novel potent anti-STEAP1 bispecific antibody to redirect T cells for cancer immunotherapy. J Immunother Cancer. 2021;9(9):e003114. doi:10.1136/jitc-2021-003114.
  • Bhatia V, Kamat NV, Pariva TE, Wu L-T, Tsao A, Sasaki K, Sun H, Javier G, Nutt S, Coleman I, et al. Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy. Nat Commun. 2023;14(1):2041. doi:10.1038/s41467-023-37874-2.
  • Jin Y, Lorvik KB, Jin Y, Beck C, Sike A, Persiconi I, Kvaløy E, Saatcioglu F, Dunn C, Kyte JA. Development of STEAP1 targeting chimeric antigen receptor for adoptive cell therapy against cancer. Mol Ther Oncolytics. 2022;26:189–206. doi:10.1016/j.omto.2022.06.007.
  • Li C, Lenvik, TR, Davis, ZB, Miller, JS, Vallera, DA. 718 AMG 509, a STEAP1 x CD3 bispecific XmAb® 2+1 immune therapy, exhibits avidity-driven binding and preferential killing of high STEAP1-expressing prostate and Ewing sarcoma cancer cells. J Immunother Cancer. 2020;8(Suppl 3):A430–A430.
  • Kelly WK, Danila DC, Edenfield WJ, Aggarwal RR, Petrylak DP, Sartor AO, Sumey CJ, Dorff TB, Yu EY, Adra N, et al. Phase I study of AMG 509, a STEAP1 x CD3 T cell-recruiting XmAb 2+1 immune therapy, in patients with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2020;38(15_suppl):TPS5589–TPS5589. doi:10.1200/JCO.2020.38.15_suppl.TPS5589.
  • Danila DC, Waterhouse DM, Appleman LJ, Pook DW, Matsubara N, Dorff TB, Lee J-L, Armstrong AJ, Kim M, Horvath L, et al. A phase 1 study of AMG 509 in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2022;40(16_suppl):TPS5101–TPS5101. doi:10.1200/JCO.2022.40.16_suppl.TPS5101.
  • Kelly WK, Danila, DC, Lin, CC, Lee, JL, Matsubara, N, Ward, PJ, Armstrong, AJ, Pook D, Kim M, Dorff, TB et al. Xaluritamig, a STEAP1 x CD3 XmAb 2+1 immune therapy for metastatic castration-resistant prostate cancer: results from dose exploration in a first-in-human study. Cancer Discov. 2023;14(1):OF1–OF14.
  • Tran B, Horvath L, Dorff TB, Greil R, Machiels JPH, Roncolato F, Autio KA, Rettig M, Fizazi K, Lolkema MP, et al. Phase I study of AMG 160, a half-life extended bispecific T-cell engager (HLE BiTE) immune therapy targeting prostate-specific membrane antigen (PSMA), in patients with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2020;38(6_suppl):TPS261–TPS261. doi:10.1200/JCO.2020.38.6_suppl.TPS261.
  • Stein MN, Zhang J, Kelly WK, Wise DR, Tsao K, Carneiro BA, Falchook GS, Sun F, Govindraj S, Sims JS, et al. Preliminary results from a phase 1/2 study of co-stimulatory bispecific PSMAxCD28 antibody REGN5678 in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2023;41(6_suppl):154–154. doi:10.1200/JCO.2023.41.6_suppl.154.
  • Zekri L, Vogt F, Osburg L, Müller S, Kauer J, Manz T, Pflügler M, Maurer A, Heitmann JS, Hagelstein I, et al. An IgG-based bispecific antibody for improved dual targeting in PSMA-positive cancer. EMBO Mol Med. 2021;13(2):e11902. doi:10.15252/emmm.201911902.
  • Heitmann JS, Walz JS, Pflügler M, Marconato M, Tegeler CM, Reusch J, Labrenz J, Schlenk R, Jung G, Salih H, et al. Abstract CT141: CC-1, a bispecific PSMAxCD3 antibody for treatment of prostate carcinoma: Results of the ongoing phase I dose escalation trial. Cancer Res. 2022;82(12_Supplement):CT141–CT141. doi:10.1158/1538-7445.AM2022-CT141.
  • Hackenbruch C, Heitmann JS, Walz JS, Federmann B, Pflügler M, Hadaschik BA, Jung G, Salih HR. ProSperA: Phase I study to evaluate safety, tolerability and preliminary efficacy of a bispecific PSMAxCD3 antibody in men with biochemical recurrence of prostate cancer. J Clin Oncol. 2023;41(16_suppl):TPS5114–TPS5114. doi:10.1200/JCO.2023.41.16_suppl.TPS5114.
  • Lutz MS, Klimovich B, Maurer S, Heitmann JS, Märklin M, Zekri L, Jung G, Salih HR, Hinterleitner C. Platelets subvert antitumor efficacy of T cell-recruiting bispecific antibodies. J Immunother Cancer. 2022;10(2). doi:10.1136/jitc-2021-003655.
  • Mehra N, Robbrecht D, Voortman J, Parren PW, Macia S, Veeneman J, Umarale S, Winograd B, van der Vliet HJ, Wise DR, et al. Early dose escalation of LAVA-1207, a novel bispecific gamma-delta T-cell engager (Gammabody), in patients with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2023;41(6_suppl):153–153. doi:10.1200/JCO.2023.41.6_suppl.153.
  • Sen M, Wankowski DM, Garlie NK, Siebenlist RE, Van Epps D, LeFever AV, Lum LG. Use of anti-CD3 × Anti-HER2/neu bispecific antibody for redirecting cytotoxicity of activated T cells toward HER2/neu + tumors. J Hematother Stem Cell Res. 2001;10(2):247–260. doi:10.1089/15258160151134944.
  • Grabert RC, Cousens LP, Smith JA, Olson S, Gall J, Young WB, Davol PA, Lum LG. 2006. Human T cells armed with Her2/neu bispecific antibodies divide, are cytotoxic, and secrete cytokines with repeated stimulation. Clin Cancer Res. 12(2):569–576. doi:10.1158/1078-0432.CCR-05-2005.
  • Vaishampayan UN, Thakur A, Chen W, Deol A, Patel M, Dobson K, Dickow B, Schalk D, Schienschang A, Whitaker S, et al. Phase II trial of pembrolizumab and anti-CD3 x anti-HER2 bispecific antibody-armed activated T cells in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2023;29(1):122–133. doi:10.1158/1078-0432.CCR-22-1601.
  • Aggarwal RR, Aparicio A, Heidenreich A, Sandhu SK, Zhang Y, Salvati M, Shetty A, Hashemi Sadraei N. Phase 1b study of AMG 757, a half-life extended bispecific T-cell engager (HLE BiTEimmune-oncology therapy) targeting DLL3, in de novo or treatment emergent neuroendocrine prostate cancer (NEPC). J Clin Oncol. 2021;39(15_suppl):TPS5100–TPS5100. doi:10.1200/JCO.2021.39.15_suppl.TPS5100.
  • Puca L, Gavyert K, Sailer V, Conteduca V, Dardenne E, Sigouros M, Isse K, Kearney M, Vosoughi A, Fernandez L, et al. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci Transl Med. 2019;11(484):eaav0891. doi:10.1126/scitranslmed.aav0891.
  • Chou J, Egusa EA, Wang S, Badura ML, Lee F, Bidkar AP, Zhu J, Shenoy T, Trepka K, Robinson TM, et al. Immunotherapeutic targeting and PET imaging of DLL3 in small-cell neuroendocrine prostate cancer. Cancer Res. 2023;83(2):301–315. doi:10.1158/0008-5472.CAN-22-1433.
  • Owonikoko TK, Champiat S, Johnson ML, Govindan R, Izumi H, Lai WVV, Borghaei H, Boyer MJ, Boosman RJ, Hummel H-D, et al. Updated results from a phase 1 study of AMG 757, a half-life extended bispecific T-cell engager (BiTE) immuno-oncology therapy against delta-like ligand 3 (DLL3), in small cell lung cancer (SCLC). J Clin Oncol. 2021;39(15_suppl):8510–8510. doi:10.1200/JCO.2021.39.15_suppl.8510.
  • Hipp S, Voynov V, Drobits-Handl B, Giragossian C, Trapani F, Nixon AE, Scheer JM, Adam PJ. A bispecific DLL3/CD3 IgG-like T-cell engaging antibody induces antitumor responses in small cell lung cancer. Clin Cancer Res. 2020;26(19):5258–5268. doi:10.1158/1078-0432.CCR-20-0926.
  • Pierce AJ, Brailey PM, Song C, Archer S, Bartlett PD, Bland-Ward P. Abstract 2877: CB307: A novel selective CD137 agonist for enhancement of immune cell responses to PSMA+ tumors. Cancer Res. 2022;82(12_Supplement):2877–2877. doi:10.1158/1538-7445.AM2022-2877.
  • Kelly WK, Thanigaimani P, Sun F, Seebach FA, Lowy I, Sandigursky S, Miller E. A phase 1/2 study of REGN4336, a PSMAxCD3 bispecific antibody, alone and in combination with cemiplimab in patients with metastatic castration-resistant prostate cancer. J Clin Oncol. 2022;40(16_suppl):TPS5105–TPS5105. doi:10.1200/JCO.2022.40.16_suppl.TPS5105.
  • Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, Grupp SA, Mackall CL. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–195. doi:10.1182/blood-2014-05-552729.
  • Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M, Kochanek M, Böll B, von Bergwelt-Baildon MS. Cytokine release syndrome. J Immunother Cancer. 2018;6(1):56. doi:10.1186/s40425-018-0343-9.
  • Morris EC, Neelapu SS, Giavridis T, Sadelain M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol. 2022;22(2):85–96. doi:10.1038/s41577-021-00547-6.
  • Klinger M, Zugmaier G, Nägele V, Goebeler M-E, Brandl C, Stelljes M, Lassmann H, von Stackelberg A, Bargou RC, Kufer P, et al. Adhesion of T cells to endothelial cells facilitates blinatumomab-associated neurologic adverse events. Cancer Res. 2020;80(1):91–101. doi:10.1158/0008-5472.CAN-19-1131.
  • Stein AS, Schiller G, Benjamin R, Jia C, Zhang A, Zhu M, Zimmerman Z, Topp MS. Neurologic adverse events in patients with relapsed/refractory acute lymphoblastic leukemia treated with blinatumomab: management and mitigating factors. Ann Hematol. 2019;98(1):159–167. doi:10.1007/s00277-018-3497-0.
  • Flugel CL, Majzner RG, Krenciute G, Dotti G, Riddell SR, Wagner DL, Abou-el-Enein M. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat Rev Clin Oncol. 2023;20(1):49–62. doi:10.1038/s41571-022-00704-3.
  • Lamers CH, Klaver Y, Gratama J, Sleijfer S, Debets R. Treatment of metastatic renal cell carcinoma (mRCC) with CAIX CAR-engineered T-cells–a completed study overview. Biochem Soc Trans. 2016;44(3):951–959. doi:10.1042/BST20160037.
  • Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. Clin Cancer Res. 2015;21(4):687–692. doi:10.1158/1078-0432.CCR-14-1860.
  • Ferrone C, Dranoff G. Dual roles for immunity in gastrointestinal cancers. J Clin Oncol. 2010;28(26):4045–4051. doi:10.1200/JCO.2010.27.9992.
  • Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HMCS, et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35 Suppl:S185–S198. doi:10.1016/j.semcancer.2015.03.004.
  • Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–1570. doi:10.1126/science.1203486.
  • Chang CC, Campoli M, Ferrone S. Classical and nonclassical HLA class I antigen and NK cell-activating ligand changes in malignant cells: current challenges and future directions. Adv Cancer Res. 2005;93:189–234.
  • Le Mercier I, Chen W, Lines JL, Day M, Li J, Sergent P, Noelle RJ, Wang L. VISTA regulates the development of protective antitumor immunity. Cancer Res. 2014;74(7):1933–1944. doi:10.1158/0008-5472.CAN-13-1506.
  • Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, Gajewski TF. Up-Regulation of PD-L1, IDO, and T regs in the Melanoma Tumor Microenvironment Is Driven by CD8 + T Cells. Sci Transl med. 2013;5(200):200ra116. doi:10.1126/scitranslmed.3006504.
  • Goebeler ME, Bargou RC. 2020. T cell-engaging therapies — BiTEs and beyond. Nat Rev Clin Oncol. 17(7):418–434. doi:10.1038/s41571-020-0347-5.
  • June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. 2018. CAR T cell immunotherapy for human cancer. Science. 359(6382):1361–1365. doi:10.1126/science.aar6711.
  • Wrzesinski C, Paulos CM, Kaiser A, Muranski P, Palmer DC, Gattinoni L, Yu Z, Rosenberg SA, Restifo NP. 2010. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J Immunother (1991). 33(1):1–7. doi:10.1097/CJI.0b013e3181b88ffc.
  • Zorko NA, Ryan CJ. Novel immune engagers and cellular therapies for metastatic castration-resistant prostate cancer: do we take a BiTe or ride BiKEs, TriKEs, and CARs? Prostate Cancer Prostatic Dis. 2021;24(4):986–996. doi:10.1038/s41391-021-00381-w.
  • Bryceson YT, March ME, Ljunggren H-G, Long EO. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood. 2006;107(1):159–166. doi:10.1182/blood-2005-04-1351.
  • Schmohl JU, Felices M, Taras E, Miller JS, Vallera DA. Enhanced ADCC and NK cell activation of an anticarcinoma bispecific antibody by genetic insertion of a modified IL-15 cross-linker. Mol Ther. 2016;24(7):1312–1322. doi: 10.1038/mt.2016.88.
  • Felices M, Lenvik, TR, Davis, ZB, Miller, JS, Vallera, DA. Generation of BiKEs and TriKEs to improve NK cell-mediated targeting of tumor cells. Methods Mol Biol. 2016;1441:333–346.
  • Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer. 2021;21(6):360–378. doi:10.1038/s41568-021-00346-0.