2,156
Views
109
CrossRef citations to date
0
Altmetric
Reports

Combinatorial Action of MicroRNAs let-7 and miR-34 Effectively Synergizes with Erlotinib to Suppress Non-small Cell Lung Cancer Cell Proliferation

&
Pages 2171-2180 | Received 01 Dec 2014, Accepted 23 Dec 2014, Published online: 17 Jun 2015

References

  • American Cancer Society: Cancer Facts & Figures 2014. Available: www.cancer.org, 2014
  • Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med 2008, 359:1367-1380; PMID:18815398; http://dx.doi.org/10.1056/NEJMra0802714
  • Herbst RS, Johnson DH, Mininberg E, Carbone DP, Henderson T, Kim ES, Blumenschein G, Jr., Lee JJ, Liu DD, Truong MT, et al. Phase I/II trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non-small-cell lung cancer. J Clin Oncol 2005, 23:2544-2555; PMID:15753462; http://dx.doi.org/10.1200/JCO.2005.02.477
  • Sekido Y, Fong KM, Minna JD. Molecular genetics of lung cancer. Ann Rev Med 2003, 54:73-87; PMID:12471176; http://dx.doi.org/10.1146/annurev.med.54.101601.152202
  • Minna JD, Roth JA, Gazdar AF. Focus on lung cancer. Cancer Cell 2002, 1:49-52; PMID:12086887; http://dx.doi.org/10.1016/S1535-6108(02)00027-2
  • Herbst RS, Lynch TJ, Sandler AB. Beyond doublet chemotherapy for advanced non-small-cell lung cancer: combination of targeted agents with first-line chemotherapy. Clin Lung Cancer 2009, 10:20-27; PMID:19289368; http://dx.doi.org/10.3816/CLC.2009.n.003
  • Miller VA, Riely GJ, Zakowski MF, Li AR, Patel JD, Heelan RT, Kris MG, Sandler AB, Carbone DP, Tsao A, et al. Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib. J Clin Oncol 2008, 26:1472-1478; PMID:18349398; http://dx.doi.org/10.1200/JCO.2007.13.0062
  • Woodburn JR. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol Ther 1999, 82:241-250; PMID:10454201; http://dx.doi.org/10.1016/S0163-7258(98)00045-X
  • Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. Eur J Cancer 2001, 37 Suppl 4:S9-15; http://dx.doi.org/10.1016/S0959-8049(01)00231-3
  • Westra WH. Early glandular neoplasia of the lung. Respir Res 2000, 1:163-169; PMID:11667981; http://dx.doi.org/10.1186/rr28
  • Tang X, Shigematsu H, Bekele BN, Roth JA, Minna JD, Hong WK, Gazdar AF, Wistuba II. EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. Cancer Res 2005, 65:7568-7572; PMID:16140919
  • Herbst RS, Sandler A. Bevacizumab and erlotinib: a promising new approach to the treatment of advanced NSCLC. Oncologist 2008, 13:1166-1176; PMID:18997180; http://dx.doi.org/10.1634/theoncologist.2008-0108
  • Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007, 7:169-181; PMID:17318210; http://dx.doi.org/10.1038/nrc2088
  • Sequist LV, Bell DW, Lynch TJ, Haber DA. Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J Clin Oncol 2007, 25:587-595; PMID:17290067; http://dx.doi.org/10.1200/JCO.2006.07.3585
  • Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2005, 2:e73; PMID:15737014; http://dx.doi.org/10.1371/journal.pmed.0020073
  • Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M, Zakowski MF, Heelan RT, Kris MG, Varmus HE. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2005, 2:e17; PMID:15696205; http://dx.doi.org/10.1371/journal.pmed.0020017
  • Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS, Ince WL, Janne PA, Januario T, Johnson DH, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 2005, 23:5900-5909; PMID:16043828; http://dx.doi.org/10.1200/JCO.2005.02.857
  • Riely GJ, Kris MG, Rosenbaum D, Marks J, Li A, Chitale DA, Nafa K, Riedel ER, Hsu M, Pao W, et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res 2008, 14:5731-5734; PMID:18794081; http://dx.doi.org/10.1158/1078-0432.CCR-08-0646
  • Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 2007, 104:20932-20937; PMID:18093943; http://dx.doi.org/10.1073/pnas.0710370104
  • Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007, 316:1039-1043; PMID:17463250; http://dx.doi.org/10.1126/science.1141478
  • Zhang Z, Lee JC, Lin L, Olivas V, Au V, LaFramboise T, Abdel-Rahman M, Wang X, Levine AD, Rho JK, et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nature Genet 2012, 44:852-860; PMID:22751098; http://dx.doi.org/10.1038/ng.2330
  • Inukai M, Toyooka S, Ito S, Asano H, Ichihara S, Soh J, Suehisa H, Ouchida M, Aoe K, Aoe M, et al. Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res 2006, 66:7854-7858; PMID:16912157; http://dx.doi.org/10.1158/0008-5472.CAN-06-1951
  • Sun S, Schiller JH, Gazdar AF. Lung cancer in never smokers–a different disease. Nat Rev Cancer 2007, 7:778-790; PMID:17882278; http://dx.doi.org/10.1038/nrc2190
  • Wistuba II, Mao L, Gazdar AF. Smoking molecular damage in bronchial epithelium. Oncogene 2002, 21:7298-7306; PMID:12379874; http://dx.doi.org/10.1038/sj.onc.1205806
  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 microRNA family. Cell 2005, 120:635-647; PMID:15766527; http://dx.doi.org/10.1016/j.cell.2005.01.014
  • Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 2007, 17:1298-1307; PMID:17656095; http://dx.doi.org/10.1016/j.cub.2007.06.068
  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, et al. A microRNA component of the p53 tumour suppressor network. Nature 2007, 447:1130-1134; PMID:17554337; http://dx.doi.org/10.1038/nature05939
  • Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 2007, 6:1586-1593; PMID:17554199; http://dx.doi.org/10.4161/cc.6.13.4436
  • Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007, 26:731-743; PMID:17540598; http://dx.doi.org/10.1016/j.molcel.2007.05.017
  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007, 26:745-752; PMID:17540599; http://dx.doi.org/10.1016/j.molcel.2007.05.010
  • Buechner J, Tomte E, Haug BH, Henriksen JR, Lokke C, Flaegstad T, Einvik C. Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br J Cancer 2011, 105:296-303; PMID:21654684; http://dx.doi.org/10.1038/bjc.2011.220
  • Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 2009, 23:1743-1748; PMID:19574298; http://dx.doi.org/10.1101/gad.1812509
  • Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004, 64:3753-3756; PMID:15172979; http://dx.doi.org/10.1158/0008-5472.CAN-04-0637
  • Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 2007, 21:1025-1030; PMID:17437991; http://dx.doi.org/10.1101/gad.1540407
  • Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. Science 2008, 320:97-100; PMID:18292307; http://dx.doi.org/10.1126/science.1154040
  • Kaller M, Liffers ST, Oeljeklaus S, Kuhlmann K, Roh S, Hoffmann R, Warscheid B, Hermeking H. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics 2011, 10:M111 010462; http://dx.doi.org/10.1074/mcp.M111.010462
  • Wei JS, Song YK, Durinck S, Chen QR, Cheuk AT, Tsang P, Zhang Q, Thiele CJ, Slack A, Shohet J, Khan J. The MYCN oncogene is a direct target of miR-34a. Oncogene 2008, 27:5204-5213; PMID:18504438; http://dx.doi.org/10.1038/onc.2008.154
  • Adams BD, Kasinski AL, Slack FJ. Aberrant regulation and function of microRNAs in cancer. Curr Biol 2014, 24:R762-776; PMID:25137592; http://dx.doi.org/10.1016/j.cub.2014.06.043
  • Kasinski AL, Slack FJ. miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res 2012, 72:5576-5587; PMID:22964582; http://dx.doi.org/10.1158/0008-5472.CAN-12-2001
  • Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 2011, 11:849-864; PMID:22113163; http://dx.doi.org/10.1038/nrc3166
  • Stahlhut C, Slack FJ. MicroRNAs and the cancer phenotype: profiling, signatures and clinical implications. Genome Med 2013, 5:111; PMID:24373327; http://dx.doi.org/10.1186/gm516
  • Stahlhut Espinosa CE, Slack FJ. The role of microRNAs in cancer. Yale J Biol Med 2006, 79:131-140; PMID:17940623
  • Kasinski AL, Kelnar K, Stahlhut C, Orellana E, Zhao J, Shimer E, Dysart S, Chen X, Bader AG, Slack FJ. A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene 2014; PMID:25174400
  • Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, Weidhaas JB, Bader AG, Slack FJ. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 2011, 19:1116-1122; PMID:21427705; http://dx.doi.org/10.1038/mt.2011.48
  • Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 2010, 70:5923-5930; PMID:20570894; http://dx.doi.org/10.1158/0008-5472.CAN-10-0655
  • Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M, Homer R, Brown D, Bader AG, Weidhaas JB, Slack FJ. Regression of murine lung tumors by the let-7 microRNA. Oncogene 2010, 29:1580-1587; PMID:19966857; http://dx.doi.org/10.1038/onc.2009.445
  • Bader AG. miR-34 - a microRNA replacement therapy is headed to the clinic. Front Genet 2012, 3:120; PMID:22783274; http://dx.doi.org/10.3389/fgene.2012.00120
  • A Multicenter Phase I Study of MRX34, MicroRNA miR-RX34 Liposomal Injection [http://clinicaltrials.gov/show/NCT01829971], accessed 11/25/2014
  • Zhao J, Kelnar K, Bader AG. In-depth analysis shows synergy between erlotinib and miR-34a. PloS One 2014, 9:e89105; PMID:24551227; http://dx.doi.org/10.1371/journal.pone.0089105
  • Zhou JY, Chen X, Zhao J, Bao Z, Chen X, Zhang P, Liu ZF, Zhou JY. MicroRNA-34a overcomes HGF-mediated gefitinib resistance in EGFR mutant lung cancer cells partly by targeting MET. Cancer Lett 2014, 351:265-271; PMID:24983493; http://dx.doi.org/10.1016/j.canlet.2014.06.010
  • Singh M, Lima A, Molina R, Hamilton P, Clermont AC, Devasthali V, Thompson JD, Cheng JH, Bou Reslan H, Ho CC, et al. Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models. Nat Biotechnol 2010, 28:585-593; PMID:20495549; http://dx.doi.org/10.1038/nbt.1640
  • Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 2006, 58:621-681; PMID:16968952
  • Glisson BS, Kurie JM, Perez-Soler R, Fox NJ, Murphy WK, Fossella FV, Lee JS, Ross MB, Nyberg DA, Pisters KM, et al. Cisplatin, etoposide, and paclitaxel in the treatment of patients with extensive small-cell lung carcinoma. J Clin Oncol 1999, 17:2309-2315; PMID:10561292
  • Kelnar K, Peltier HJ, Leatherbury N, Stoudemire J, Bader AG. Quantification of therapeutic miRNA mimics in whole blood from nonhuman primates. Anal Chem 2014, 86:1534-1542; PMID:24397447

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.