1,681
Views
12
CrossRef citations to date
0
Altmetric
Report

Destabilization of pluripotency in the absence of Mad2l2

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 1596-1610 | Received 05 Sep 2014, Accepted 28 Feb 2015, Published online: 21 May 2015

References

  • Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008; 132:567–82; PMID:18295576; https://doi.org/10.1016/j.cell.2008.01.015
  • Yeo JC, Ng HH. The transcriptional regulation of pluripotency. Cell Res 2013; 23:20–32; PMID:23229513; https://doi.org/10.1038/cr.2012.172
  • Denholtz M, Plath K. Pluripotency in 3D: genome organization in pluripotent cells. Curr Opin Cell Biol 2012; 24:793–801; PMID:23199754; https://doi.org/10.1016/j.ceb.2012.11.001
  • Surani MA, Hayashi K, Hajkova P. Genetic and epigenetic regulators of pluripotency. Cell 2007; 128:747–62; PMID:17320511; https://doi.org/10.1016/j.cell.2007.02.010
  • Young RA. Control of the embryonic stem cell state. Cell 2011; 144:940–54.
  • Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 2006; 10:105–16; PMID:16399082; https://doi.org/10.1016/j.devcel.2005.10.017
  • Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, Edsall LE, Kuan S, Luu Y, Klugman S, et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 2010; 6:479–91; PMID:20452322; https://doi.org/10.1016/j.stem.2010.03.018
  • Meshorer E, Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 2006; 7:540–6; PMID:16723974; https://doi.org/10.1038/nrm1938
  • Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir GA, Stewart R, Thomson JA. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 2007; 1:299–312; PMID:18371364; https://doi.org/10.1016/j.stem.2007.08.003
  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006; 125:315–26; PMID:16630819; https://doi.org/10.1016/j.cell.2006.02.041
  • Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, et al. Chromatin signatures of pluripotent cell lines. Nat Cell Biol 2006; 8:532–8; PMID:16570078; https://doi.org/10.1038/ncb1403
  • Niwa H, Ogawa K, Shimosato D, Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 2009; 460:118–22; PMID:19571885; https://doi.org/10.1038/nature08113
  • Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 2003; 115:281–92; PMID:14636556; https://doi.org/10.1016/S0092-8674(03)00847-X
  • Qi X, Li TG, Hao J, Hu J, Wang J, Simmons H, Miura S, Mishina Y, Zhao GQ. BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc Natl Acad Sci U S A 2004; 101:6027–32; PMID:15075392; https://doi.org/10.1073/pnas.0401367101
  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A. The ground state of embryonic stem cell self-renewal. Nature 2008; 453:519–U5; PMID:18497825; https://doi.org/10.1038/nature06968
  • Ficz G, Hore TA, Santos F, Lee HJ, Dean W, Arand J, Krueger F, Oxley D, Paul YL, Walter J, et al. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 2013; 13:351–9; PMID:23850245; https://doi.org/10.1016/j.stem.2013.06.004
  • Marks H, Kalkan T, Menafra R, Denissov S, Jones K, Hofemeister H, Nichols J, Kranz A, Stewart AF, Smith A, et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 2012; 149:590–604; PMID:22541430; https://doi.org/10.1016/j.cell.2012.03.026
  • Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, Robson P. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 2010; 18:675–85; PMID:20412781; https://doi.org/10.1016/j.devcel.2010.02.012
  • Chazaud C, Yamanaka Y, Pawson T, Rossant J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 2006; 10:615–24; PMID:16678776; https://doi.org/10.1016/j.devcel.2006.02.020
  • Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122:947–56; PMID:16153702; https://doi.org/10.1016/j.cell.2005.08.020
  • Yamaji M, Ueda J, Hayashi K, Ohta H, Yabuta Y, Kurimoto K, Nakato R, Yamada Y, Shirahige K, Saitou M. PRDM14 Ensures Naive Pluripotency through Dual Regulation of Signaling and Epigenetic Pathways in Mouse Embryonic Stem Cells. Cell Stem Cell 2013; 12:368–82; PMID:23333148; https://doi.org/10.1016/j.stem.2012.12.012
  • Leitch HG, Blair K, Mansfield W, Ayetey H, Humphreys P, Nichols J, Surani MA, Smith A. Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state. Development 2010; 137:2279–87; PMID:20519324; https://doi.org/10.1242/dev.050427
  • Pirouz M, Klimke A, Kessel M. The reciprocal relationship between primordial germ cells and pluripotent stem cells. J Mol Med (Berl) 2012; 90:753–61; PMID:22584374; https://doi.org/10.1007/s00109-012-0912-1
  • Pirouz M, Pilarski S, Kessel M. A critical function of Mad2l2 in primordial germ cell development of mice. PLoS genetics 2013; 9:e1003712; PMID:24009519; https://doi.org/10.1371/journal.pgen.1003712
  • Gan GN, Wittschieben JP, Wittschieben BO, Wood RD. DNA polymerase zeta (pol zeta) in higher eukaryotes. Cell Res 2008; 18:174–83; PMID:18157155; https://doi.org/10.1038/cr.2007.117
  • Zhang L, Yang SH, Sharrocks AD. Rev7/MAD2B links c-Jun N-terminal protein kinase pathway signaling to activation of the transcription factor Elk-1. Mol Cell Biol 2007; 27:2861–9; PMID:17296730; https://doi.org/10.1128/MCB.02276-06
  • Hong CF, Chou YT, Lin YS, Wu CW. MAD2B, a novel TCF4-binding protein, modulates TCF4-mediated epithelial-mesenchymal transdifferentiation. J Biol Chem 2009; 284:19613–22; PMID:19443654; https://doi.org/10.1074/jbc.M109.005017
  • Szabo PE, Hubner K, Scholer H, Mann JR. Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech Dev 2002; 115:157–60; PMID:12049782; https://doi.org/10.1016/S0925-4773(02)00087-4
  • Smith KN, Singh AM, Dalton S. Myc represses primitive endoderm differentiation in pluripotent stem cells. Cell Stem Cell 2010; 7:343–54; PMID:20804970; https://doi.org/10.1016/j.stem.2010.06.023
  • Artus J, Piliszek A, Hadjantonakis AK. The primitive endoderm lineage of the mouse blastocyst: sequential transcription factor activation and regulation of differentiation by Sox17. Dev Biol 2011; 350:393–404; PMID:21146513; https://doi.org/10.1016/j.ydbio.2010.12.007
  • Morris SA, Teo RT, Li H, Robson P, Glover DM, Zernicka-Goetz M. Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc Natl Acad Sci U S A 2010; 107:6364–9; PMID:20308546; https://doi.org/10.1073/pnas.0915063107
  • Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK. Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 2008; 135:3081–91; PMID:18725515; https://doi.org/10.1242/dev.021519
  • Niakan KK, Ji H, Maehr R, Vokes SA, Rodolfa KT, Sherwood RI, Yamaki M, Dimos JT, Chen AE, Melton DA, et al. Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes Dev 2010; 24:312–26; PMID:20123909; https://doi.org/10.1101/gad.1833510
  • Nichols J, Silva J, Roode M, Smith A. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 2009; 136:3215–22; PMID:19710168; https://doi.org/10.1242/dev.038893
  • Wray J, Kalkan T, Gomez-Lopez S, Eckardt D, Cook A, Kemler R, Smith A. Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat Cell Biol 2011; 13:838–45; PMID:21685889; https://doi.org/10.1038/ncb2267
  • Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 2010; 11:R14; PMID:20132535; https://doi.org/10.1186/gb-2010-11-2-r14
  • Dennis G Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003; 4:P3; PMID:12734009; https://doi.org/10.1186/gb-2003-4-5-p3
  • Yamanaka Y, Lanner F, Rossant J. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 2010; 137:715–24; PMID:20147376; https://doi.org/10.1242/dev.043471
  • Wen B, Wu H, Shinkai Y, Irizarry RA, Feinberg AP. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet 2009; 41:246–50; PMID:19151716; https://doi.org/10.1038/ng.297
  • Yamamizu K, Fujihara M, Tachibana M, Katayama S, Takahashi A, Hara E, Imai H, Shinkai Y, Yamashita JK. Protein kinase A determines timing of early differentiation through epigenetic regulation with G9a. Cell Stem Cell 2012; 10:759–70; PMID:22704517; https://doi.org/10.1016/j.stem.2012.02.022
  • Kubicek S, O'Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, Rea S, Mechtler K, Kowalski JA, Homon CA, et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 2007; 25:473–81; PMID:17289593; https://doi.org/10.1016/j.molcel.2007.01.017
  • Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Genome Res 2002; 12:996–1006; PMID:12045153; https://doi.org/10.1101/gr.229102
  • Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006; 38:431–40; PMID:16518401; https://doi.org/10.1038/ng1760
  • Ng HH, Surani MA. The transcriptional and signalling networks of pluripotency. Nat Cell Biol 2011; 13:490–6; PMID:21540844; https://doi.org/10.1038/ncb0511-490
  • Radzisheuskaya A, Chia Gle B, dos Santos RL, Theunissen TW, Castro LF, Nichols J, Silva JC. A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nat Cell Biol 2013; 15:579–90; PMID:23629142; https://doi.org/10.1038/ncb2742
  • Kuijk EW, van Tol LT, Van de Velde H, Wubbolts R, Welling M, Geijsen N, Roelen BA. The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos. Development 2012; 139:871–82; PMID:22278923; https://doi.org/10.1242/dev.071688
  • Kang M, Piliszek A, Artus J, Hadjantonakis AK. FGF4 is required for lineage restriction and salt-and-pepper distribution of primitive endoderm factors but not their initial expression in the mouse. Development 2013; 140:267–79; PMID:23193166; https://doi.org/10.1242/dev.084996
  • Kunath T, Saba-El-Leil MK, Almousailleakh M, Wray J, Meloche S, Smith A. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 2007; 134:2895–902; PMID:17660198; https://doi.org/10.1242/dev.02880
  • Chappell J, Sun Y, Singh A, Dalton S. MYC/MAX control ERK signaling and pluripotency by regulation of dual-specificity phosphatases 2 and 7. Genes Dev 2013; 27:725–33; PMID:23592794; https://doi.org/10.1101/gad.211300.112
  • Chen Q, Zhou Y, Zhao X, Zhang M. Effect of dual-specificity protein phosphatase 5 on pluripotency maintenance and differentiation of mouse embryonic stem cells. J Cell Biochem 2011; 112:3185–93; PMID:21732408; https://doi.org/10.1002/jcb.23244
  • Yao K, Ki MO, Chen H, Cho YY, Kim SH, Yu DH, Lee SY, Lee KY, Bae K, Peng C, et al. JNK1 and 2 play a negative role in reprogramming to pluripotent stem cells by suppressing Klf4 activity. Stem cell research 2014; 12:139–52; PMID:24211391; https://doi.org/10.1016/j.scr.2013.10.005
  • Li L, Sun L, Gao F, Jiang J, Yang Y, Li C, Gu J, Wei Z, Yang A, Lu R, et al. Stk40 links the pluripotency factor Oct4 to the Erk/MAPK pathway and controls extraembryonic endoderm differentiation. Proc Natl Acad Sci U S A 2010; 107:1402–7; PMID:20080709; https://doi.org/10.1073/pnas.0905657107
  • Kalmar T, Lim C, Hayward P, Munoz-Descalzo S, Nichols J, Garcia-Ojalvo J, Martinez Arias A. Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol 2009; 7:e1000149; PMID:19582141; https://doi.org/10.1371/journal.pbio.1000149
  • Hough SR, Clements I, Welch PJ, Wiederholt KA. Differentiation of mouse embryonic stem cells after RNA interference-mediated silencing of OCT4 and Nanog. Stem Cells 2006; 24:1467–75; PMID:16456133; https://doi.org/10.1634/stemcells.2005-0475
  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113:631–42; PMID:12787504; https://doi.org/10.1016/S0092-8674(03)00393-3
  • Hyslop L, Stojkovic M, Armstrong L, Walter T, Stojkovic P, Przyborski S, Herbert M, Murdoch A, Strachan T, Lako M. Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells 2005; 23:1035–43; PMID:15983365; https://doi.org/10.1634/stemcells.2005-0080
  • Thompson JR, Gudas LJ. Retinoic acid induces parietal endoderm but not primitive endoderm and visceral endoderm differentiation in F9 teratocarcinoma stem cells with a targeted deletion of the Rex-1 (Zfp-42) gene. Mol Cell Endocrinol 2002; 195:119–33; PMID:12354678; https://doi.org/10.1016/S0303-7207(02)00180-6
  • Ma Z, Swigut T, Valouev A, Rada-Iglesias A, Wysocka J. Sequence-specific regulator Prdm14 safeguards mouse ESCs from entering extraembryonic endoderm fates. Nat Structural Mol Biol 2011; 18:120–7; PMID:21183938; https://doi.org/10.1038/nsmb.2000
  • Tsuneyoshi N, Sumi T, Onda H, Nojima H, Nakatsuji N, Suemori H. PRDM14 suppresses expression of differentiation marker genes in human embryonic stem cells. Biochem Biophys Res Commun 2008; 367:899–905; PMID:18194669; https://doi.org/10.1016/j.bbrc.2007.12.189
  • Forrai A, Boyle K, Hart AH, Hartley L, Rakar S, Willson TA, Simpson KM, Roberts AW, Alexander WS, Voss AK, et al. Absence of suppressor of cytokine signalling 3 reduces self-renewal and promotes differentiation in murine embryonic stem cells. Stem Cells 2006; 24:604–14; PMID:16123385; https://doi.org/10.1634/stemcells.2005-0323
  • Bao S, Leitch HG, Gillich A, Nichols J, Tang F, Kim S, Lee C, Zwaka T, Li X, Surani MA. The germ cell determinant Blimp1 is not required for derivation of pluripotent stem cells. Cell Stem Cell 2012; 11:110–7; PMID:22770244; https://doi.org/10.1016/j.stem.2012.02.023
  • Brumbaugh J, Russell JD, Yu P, Westphall MS, Coon JJ, Thomson JA. NANOG Is Multiply Phosphorylated and Directly Modified by ERK2 and CDK1 In Vitro. Stem Cell Rep 2014; 2:18–25; PMID:24678451; https://doi.org/10.1016/j.stemcr.2013.12.005
  • Yu P, Pan G, Yu J, Thomson JA. FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell 2011; 8:326–34; PMID:21362572; https://doi.org/10.1016/j.stem.2011.01.001
  • Goke J, Chan YS, Yan J, Vingron M, Ng HH. Genome-wide kinase-chromatin interactions reveal the regulatory network of ERK signaling in human embryonic stem cells. Mol Cell 2013; 50:844–55; PMID:23727019; https://doi.org/10.1016/j.molcel.2013.04.030
  • Mozzetta C, Pontis J, Fritsch L, Robin P, Portoso M, Proux C, Margueron R, Ait-Si-Ali S. The Histone H3 Lysine 9 Methyltransferases G9a and GLP Regulate Polycomb Repressive Complex 2-Mediated Gene Silencing. Mol Cell 2014; 53:277–89; PMID:24389103; https://doi.org/10.1016/j.molcel.2013.12.005
  • Takahashi A, Imai Y, Yamakoshi K, Kuninaka S, Ohtani N, Yoshimoto S, Hori S, Tachibana M, Anderton E, Takeuchi T, et al. DNA damage signaling triggers degradation of histone methyltransferases through APC/C(Cdh1) in senescent cells. Mol Cell 2012; 45:123–31; PMID:22178396; https://doi.org/10.1016/j.molcel.2011.10.018
  • Kaidi A, Jackson SP. KAT5 tyrosine phosphorylation couples chromatin sensing to ATM signalling. Nature 2013; 498:70–4; PMID:23708966; https://doi.org/10.1038/nature12201
  • Loh KM, Lim B. A precarious balance: pluripotency factors as lineage specifiers. Cell Stem Cell 2011; 8:363–9; PMID:21474100; https://doi.org/10.1016/j.stem.2011.03.013
  • Shu J, Wu C, Wu Y, Li Z, Shao S, Zhao W, Tang X, Yang H, Shen L, Zuo X, et al. Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell 2013; 153:963–75; PMID:23706735; https://doi.org/10.1016/j.cell.2013.05.001
  • Szulc J, Wiznerowicz M, Sauvain MO, Trono D, Aebischer P. A versatile tool for conditional gene expression and knockdown. Nat Method 2006; 3:109–16; PMID:16432520; https://doi.org/10.1038/nmeth846
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Method 2012; 9:357–9; PMID:22388286; https://doi.org/10.1038/nmeth.1923
  • Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protocol 2009; 4:1184–91; PMID:19617889; https://doi.org/10.1038/nprot.2009.97
  • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010; 11:R106; PMID:20979621; https://doi.org/10.1186/gb-2010-11-10-r106