1,050
Views
19
CrossRef citations to date
0
Altmetric
Report

Tissue inhibitor of metalloproteinase 2 inhibits activation of the β-catenin signaling in melanoma cells

&
Pages 1666-1674 | Received 07 Jan 2015, Accepted 12 Mar 2015, Published online: 02 Jun 2015

References

  • Sun J. Matrix metalloproteinases and tissue inhibitor of metalloproteinases are essential for the inflammatory response in cancer cells. J Signal Transduct 2010; 2010:985132; PMID:21152266; http://dx.doi.org/10.1155/2010/985132
  • Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochimica Biophysica Acta 2000; 1477:267–83; PMID:10708863; http://dx.doi.org/10.1016/S0167-4838(99)00279-4
  • Vaisanen AH, Kallioinen M, Turpeenniemi-Hujanen T. Comparison of the prognostic value of matrix metalloproteinases 2 and 9 in cutaneous melanoma. Hum Pathol 2008; 39:377–85; PMID:18187184; http://dx.doi.org/10.1016/j.humpath.2007.06.021
  • Hernandez-Barrantes S, Shimura Y, Soloway PD, Sang QA, Fridman R. Differential roles of TIMP-4 and TIMP-2 in pro-MMP-2 activation by MT1-MMP. Biochem Biophys Res Commun 2001; 281:126–30; PMID:11178970; http://dx.doi.org/10.1006/bbrc.2001.4323
  • Hernandez-Barrantes S, Bernardo M, Toth M, Fridman R. Regulation of membrane type-matrix metalloproteinases. Seminar Cancer Biol 2002; 12:131–8; PMID:12027585; http://dx.doi.org/10.1006/scbi.2001.0421
  • Valente P, Fassina G, Melchiori A, Masiello L, Cilli M, Vacca A, Onisto M, Santi L, Stetler-Stevenson WG, Albini A. TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. Int J Cancer 1998; 75:246–53; PMID:9462715; http://dx.doi.org/10.1002/(SICI)1097-0215(19980119)75:2%3c246::AID-IJC13%3e3.0.CO;2-B
  • Sun J, Stetler-Stevenson WG. Overexpression of tissue inhibitors of metalloproteinase 2 up-regulates NF-kappaB activity in melanoma cells. J Mol Signal 2009; 4:4; PMID:19627587; http://dx.doi.org/10.1186/1750-2187-4-4
  • Lizarraga F, Maldonado V, Melendez-Zajgla J. Tissue inhibitor of metalloproteinases-2 growth-stimulatory activity is mediated by nuclear factor-kappa B in A549 lung epithelial cells. Int J Biochem Cell Biol 2004; 36:1655–63; PMID:15147743; http://dx.doi.org/10.1016/j.biocel.2004.02.004
  • Stetler-Stevenson WG. The tumor microenvironment: regulation by MMP-independent effects of tissue inhibitor of metalloproteinases-2. Cancer Metastasis Rev 2008; 27:57–66; PMID:18058195; http://dx.doi.org/10.1007/s10555-007-9105-8
  • Munshi HG, Wu YI, Mukhopadhyay S, Ottaviano AJ, Sassano A, Koblinski JE, Platanias LC, Stack MS. Differential regulation of membrane type 1-matrix metalloproteinase activity by ERK 1/2- and p38 MAPK-modulated tissue inhibitor of metalloproteinases 2 expression controls transforming growth factor-beta1-induced pericellular collagenolysis. J Biol Chem 2004; 279:39042–50; PMID:15247230; http://dx.doi.org/10.1074/jbc.M404958200
  • Seo DW, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R, Wei BY, Stetler-Stevenson WG. TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell 2003; 114:171–80; PMID:12887919; http://dx.doi.org/10.1016/S0092-8674(03)00551-8
  • Fernandez CA, Roy R, Lee S, Yang J, Panigrahy D, Van Vliet KJ, Moses MA. The anti-angiogenic peptide, loop 6, binds insulin-like growth factor-1 receptor. J Biol Chem 2010; 285:41886–95; PMID:20940305; http://dx.doi.org/10.1074/jbc.M110.166439
  • Bourboulia D, Han H, Jensen-Taubman S, Gavil N, Isaac B, Wei B, Neckers L, Stetler-Stevenson WG. TIMP-2 modulates cancer cell transcriptional profile and enhances E-cadherin/β-catenin complex expression in A549 lung cancer cells. Oncotarget 2013; 4:163–73; PMID:23847723
  • Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin. EMBO J 2012; 31:2714–36; PMID:22617422; http://dx.doi.org/10.1038/emboj.2012.150
  • Pecina-Slaus N. Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell Int 2003; 3:17; PMID:14613514; http://dx.doi.org/10.1186/1475-2867-3-17
  • Kim W, Kim M, Jho EH. Wnt/β-catenin signalling: from plasma membrane to nucleus. Biochemical J 2013; 450:9–21; PMID:23343194; http://dx.doi.org/10.1042/BJ20121284
  • Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 2012; 149:1192–205; PMID:22682243; http://dx.doi.org/10.1016/j.cell.2012.05.012
  • Morin PJ. β-catenin signaling and cancer. BioEssays 1999; 21:1021–30; PMID:10580987; http://dx.doi.org/10.1002/(SICI)1521-1878(199912)22:1%3c1021::AID-BIES6%3e3.0.CO;2-P
  • Su Y, Fu C, Ishikawa S, Stella A, Kojima M, Shitoh K, Schreiber EM, Day BW, Liu B. APC is essential for targeting phosphorylated β-catenin to the SCFbeta-TrCP ubiquitin ligase. Mol Cell 2008; 32:652–61; PMID:19061640; http://dx.doi.org/10.1016/j.molcel.2008.10.023
  • Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA 2013; 63:11–30; PMID:23335087; http://dx.doi.org/10.3322/caac.21166
  • Larue L, Delmas V. The WNT/Beta-catenin pathway in melanoma. Frontiers Biosci 2006; 11:733–42; PMID:16146765; http://dx.doi.org/10.2741/1831
  • Sinnberg T, Menzel M, Ewerth D, Sauer B, Schwarz M, Schaller M, Garbe C, Schittek B. β-Catenin signaling increases during melanoma progression and promotes tumor cell survival and chemoresistance. PloS One 2011; 6:e23429; PMID:21858114; http://dx.doi.org/10.1371/journal.pone.0023429
  • Ray JM, Stetler-Stevenson WG. TIMP-2 expression modulates human melanoma cell adhesion and motility. Annal New York Acad Sci 1994; 732:233–47; PMID:7978796; http://dx.doi.org/10.1111/j.1749-6632.1994.tb24739.x
  • Ray JM, Stetler-Stevenson WG. Gelatinase A activity directly modulates melanoma cell adhesion and spreading. EMBO J 1995; 14:908–17; PMID:7534227
  • Sun J, Hobert ME, Rao AS, Neish AS, Madara JL. Bacterial activation of β-catenin signaling in human epithelia. Am J Physiol 2004; 287:G220–7; PMID:14764450
  • Yaguchi T, Goto Y, Kido K, Mochimaru H, Sakurai T, Tsukamoto N, Kudo-Saito C, Fujita T, Sumimoto H, Kawakami Y. Immune suppression and resistance mediated by constitutive activation of Wnt/β-catenin signaling in human melanoma cells. J Immunol 2012; 189:2110–7; PMID:22815287; http://dx.doi.org/10.4049/jimmunol.1102282
  • Damsky WE, Curley DP, Santhanakrishnan M, Rosenbaum LE, Platt JT, Gould Rothberg BE, Taketo MM, Dankort D, Rimm DL, McMahon M, et al. β-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 2011; 20:741–54; PMID:22172720; http://dx.doi.org/10.1016/j.ccr.2011.10.030
  • Rao AS, Kremenevskaja N, Resch J, Brabant G. Lithium stimulates proliferation in cultured thyrocytes by activating Wnt/β-catenin signalling. Europ J Endocrinol 2005; 153:929–38; PMID:16322400; http://dx.doi.org/10.1530/eje.1.02038
  • Hedgepeth CM, Conrad LJ, Zhang J, Huang HC, Lee VM, Klein PS. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol 1997; 185:82–91; PMID:9169052; http://dx.doi.org/10.1006/dbio.1997.8552
  • Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S America 1996; 93:8455–9; PMID:8710892; http://dx.doi.org/10.1073/pnas.93.16.8455
  • Jope RS. Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trend Pharmacol Sci 2003; 24:441–3; PMID:12967765; http://dx.doi.org/10.1016/S0165-6147(03)00206-2
  • Haq S, Michael A, Andreucci M, Bhattacharya K, Dotto P, Walters B, Woodgett J, Kilter H, Force T. Stabilization of β-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc Natl Acad Sci U S A 2003; 100:4610–5; PMID:12668767; http://dx.doi.org/10.1073/pnas.0835895100
  • Fang X, Yu SX, Lu Y, Bast RC, Jr., Woodgett JR, Mills GB. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci U S A 2000; 97:11960–5; PMID:11035810; http://dx.doi.org/10.1073/pnas.220413597
  • Stambolic V, Woodgett JR. Mitogen inactivation of glycogen synthase kinase-3 β in intact cells via serine 9 phosphorylation. Biochem J 1994; 303 (Pt 3):701–4; PMID:7980435
  • Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 2002; 22:1172–83; PMID:11809808; http://dx.doi.org/10.1128/MCB.22.4.1172-1183.2002
  • Zhou W, Lin L, Majumdar A, Li X, Zhang X, Liu W, Etheridge L, Shi Y, Martin J, Van de Ven W, et al. Modulation of morphogenesis by noncanonical Wnt signaling requires ATF/CREB family-mediated transcriptional activation of TGFbeta2. Nat Genet 2007; 39:1225–34; PMID:17767158; http://dx.doi.org/10.1038/ng2112
  • Thang NM, Kumasawa K, Tsutsui T, Nakamura H, Masaki H, Ono T, Kimura T. Overexpression of endogenous TIMP-2 increases the proliferation of BeWo choriocarcinoma cells through the MAPK-signaling pathway. Reprod Sci 2013; 20:1184–92; PMID:23427184; http://dx.doi.org/10.1177/1933719113477485
  • Johansson E, Komuro A, Iwata C, Hagiwara A, Fuse Y, Watanabe A, Morishita Y, Aburatani H, Funa K, Kano MR, et al. Exogenous introduction of tissue inhibitor of metalloproteinase 2 reduces accelerated growth of TGF-β-disrupted diffuse-type gastric carcinoma. Cancer Sci 2010; 101:2398–403; PMID:20718757; http://dx.doi.org/10.1111/j.1349-7006.2010.01688.x
  • Nemeth JA, Rafe A, Steiner M, Goolsby CL. TIMP-2 growth-stimulatory activity: a concentration- and cell type-specific response in the presence of insulin. Exp Cell Res 1996; 224:110–5; PMID:8612674; http://dx.doi.org/10.1006/excr.1996.0117
  • Giehl K, Menke A. Microenvironmental regulation of E-cadherin-mediated adherens junctions. Frontiers Bioscience 2008; 13:3975–85; PMID:18508491; http://dx.doi.org/10.2741/2985
  • Gumbiner BM. Regulation of cadherin adhesive activity. J Cell Biol 2000; 148:399–404; PMID:10662767; http://dx.doi.org/10.1083/jcb.148.3.399
  • Takeichi M, Abe K. Synaptic contact dynamics controlled by cadherin and catenins. Trend Cell Biol 2005; 15:216–21; PMID:15817378; http://dx.doi.org/10.1016/j.tcb.2005.02.002
  • Shah GV, Muralidharan A, Gokulgandhi M, Soan K, Thomas S. Cadherin switching and activation of β-catenin signaling underlie proinvasive actions of calcitonin-calcitonin receptor axis in prostate cancer. J Biol Chem 2009; 284:1018–30; PMID:19001380; http://dx.doi.org/10.1074/jbc.M807823200
  • Mareel M, Boterberg T, Noe V, Van Hoorde L, Vermeulen S, Bruyneel E, Bracke M. E-cadherin/catenin/cytoskeleton complex: a regulator of cancer invasion. J Cell Physiol 1997; 173:271–4; PMID:9365535; http://dx.doi.org/10.1002/(SICI)1097-4652(199711)173:2%3c271::AID-JCP34%3e3.0.CO;2-G
  • Nawrocki-Raby B, Gilles C, Polette M, Martinella-Catusse C, Bonnet N, Puchelle E, Foidart JM, Van Roy F, Birembaut P. E-Cadherin mediates MMP downregulation in highly invasive bronchial tumor cells. Am J Pathol 2003; 163:653–61; PMID:12875984; http://dx.doi.org/10.1016/S0002-9440(10)63692-9
  • Ciolczyk-Wierzbicka D, Gil D, Laidler P. The inhibition of cell proliferation using silencing of N-cadherin gene by siRNA process in human melanoma cell lines. Curr Med Chem 2012; 19:145–51; PMID:22300088; http://dx.doi.org/10.2174/092986712803414006
  • Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, Mills GB, Kobayashi R, Hunter T, Lu Z. Phosphorylation of β-catenin by AKT promotes β-catenin transcriptional activity. J Biol Chem 2007; 282:11221–9; PMID:17287208; http://dx.doi.org/10.1074/jbc.M611871200
  • Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002; 108:837–47; PMID:11955436; http://dx.doi.org/10.1016/S0092-8674(02)00685-2
  • Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 1997; 16:3797–804; PMID:9233789; http://dx.doi.org/10.1093/emboj/16.13.3797
  • Hart M, Concordet JP, Lassot I, Albert I, del los Santos R, Durand H, Perret C, Rubinfeld B, Margottin F, Benarous R, et al. The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr Biol 1999; 9:207–10; PMID:10074433; http://dx.doi.org/10.1016/S0960-9822(99)80091-8
  • Yang SW, Chanda D, Cody JJ, Rivera AA, Waehler R, Siegal GP, Douglas JT, Ponnazhagan S. Conditionally replicating adenovirus expressing TIMP2 increases survival in a mouse model of disseminated ovarian cancer. PloS One 2011; 6:e25131; PMID:22022379; http://dx.doi.org/10.1371/journal.pone.0025131
  • Deng X, He G, Levine A, Cao Y, Mullins C. Adenovirus-mediated expression of TIMP-1 and TIMP-2 in bone inhibits osteolytic degradation by human prostate cancer. Int J Cancer 2008; 122:209–18; PMID:17847032; http://dx.doi.org/10.1002/ijc.23053
  • Rigg AS, Lemoine NR. Adenoviral delivery of TIMP1 or TIMP2 can modify the invasive behavior of pancreatic cancer and can have a significant antitumor effect in vivo. Cancer Gene Ther 2001; 8:869–78; PMID:11773977; http://dx.doi.org/10.1038/sj.cgt.7700387
  • Li H, Lindenmeyer F, Grenet C, Opolon P, Menashi S, Soria C, Yeh P, Perricaudet M, Lu H. AdTIMP-2 inhibits tumor growth, angiogenesis, and metastasis, and prolongs survival in mice. Hum Gene Ther 2001; 12:515–26; PMID:11268284; http://dx.doi.org/10.1089/104303401300042429
  • Brand K, Baker AH, Perez-Canto A, Possling A, Sacharjat M, Geheeb M, Arnold W. Treatment of colorectal liver metastases by adenoviral transfer of tissue inhibitor of metalloproteinases-2 into the liver tissue. Cancer Res 2000; 60:5723–30; PMID:11059766
  • Vincent L, Varet J, Pille JY, Bompais H, Opolon P, Maksimenko A, Malvy C, Mirshahi M, Lu H, Vannier JP, et al. Efficacy of dendrimer-mediated angiostatin and TIMP-2 gene delivery on inhibition of tumor growth and angiogenesis: in vitro and in vivo studies. Int J Cancer 2003; 105:419–29; PMID:12704680; http://dx.doi.org/10.1002/ijc.11105
  • Sun J, Hobert ME, Duan Y, Rao AS, He TC, Chang EB, Madara JL. Crosstalk between NF-kappaB and β-catenin pathways in bacterial-colonized intestinal epithelial cells. Am J Physiol 2005; 289:G129–37; PMID:15790758
  • Mustafi R, Cerda S, Chumsangsri A, Fichera A, Bissonnette M. Protein Kinase-zeta inhibits collagen I-dependent and anchorage-independent growth and enhances apoptosis of human Caco-2 cells. Mol Cancer Res 2006; 4:683–94; PMID:16940160; http://dx.doi.org/10.1158/1541-7786.MCR-06-0057

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.