2,241
Views
22
CrossRef citations to date
0
Altmetric
EXTRA VIEW

Cancer cells exploit adaptive mitochondrial dynamics to increase tumor cell invasion

&
Pages 3242-3247 | Received 05 Aug 2015, Accepted 14 Aug 2015, Published online: 30 Oct 2015

References

  • Yuan TL, Cantley LC, PI3K pathway alterations in cancer: variations on a theme. Oncogene 2008; 27(41):5497-510; PMID:18794884; http://dx.doi.org/10.1038/onc.2008.245
  • Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 2003; 4(4):257-62; PMID:14585353; http://dx.doi.org/10.1016/S1535-6108(03)00248-4
  • Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 2009; 8(8):627-44; PMID:19644473; http://dx.doi.org/10.1038/nrd2926
  • Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 2014; 13(2):140-56; PMID:24481312; http://dx.doi.org/10.1038/nrd4204
  • Chakrabarty A, Sánchez V, Kuba MG, Rinehart C, Arteaga CL. Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. Proc Natl Acad Sci U S A 2012; 109(8):2718-23; PMID:21368164; http://dx.doi.org/10.1073/pnas.1018001108
  • Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK, Baselga J, Rosen N. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 2011; 19(1):58-71; PMID:21215704; http://dx.doi.org/10.1016/j.ccr.2010.10.031
  • Serra V, Scaltriti M, Prudkin L, Eichhorn PJ, Ibrahim YH, Chandarlapaty S, Markman B, Rodriguez O, Guzman M, Rodriguez S, et al. PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene 2011; 30(22):2547-57; PMID:21278786; http://dx.doi.org/10.1038/onc.2010.626
  • Ghosh JC, Siegelin MD, Vaira V, Faversani A, Tavecchio M, Chae YC, Lisanti S, Rampini P, Giroda M, Caino MC, et al. Adaptive mitochondrial reprogramming and resistance to PI3K therapy. J Natl Cancer Inst 2015; 107(3): PMID:25650317; http://dx.doi.org/10.1093/jnci/dju502
  • Caino MC, Ghosh JC, Chae YC, Vaira V, Rivadeneira DB, Faversani A, Rampini P, Kossenkov AV, Aird KM, Zhang R, et al. PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proc Natl Acad Sci U S A 2015; 112(28):8638-43; PMID:26124089
  • Manning, BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell 2007; 129(7):1261-74; PMID:17604717; http://dx.doi.org/10.1016/j.cell.2007.06.009
  • Zhou H, Huang S. Role of mTOR signaling in tumor cell motility, invasion and metastasis. Curr Protein Pept Sci 2011; 12(1):30-42; PMID:21190521; http://dx.doi.org/10.2174/138920311795659407
  • Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, Hall MN. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6(11):1122-8; PMID:15467718; http://dx.doi.org/10.1038/ncb1183
  • Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14(14):1296-302; PMID:15268862; http://dx.doi.org/10.1016/j.cub.2004.06.054
  • Caino MC, Chae YC, Vaira V, Ferrero S, Nosotti M, Martin NM, Weeraratna A, O'Connell M, Jernigan D, Fatatis A, et al. Metabolic stress regulates cytoskeletal dynamics and metastasis of cancer cells. J Clin Invest 2013; 123(7):2907-20; PMID:23921130; http://dx.doi.org/10.1172/JCI67841
  • Wong PM, Puente C, Ganley IG, Jiang X. The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 2013; 9(2):124-37; PMID:23295650; http://dx.doi.org/10.4161/auto.23323
  • Egan DF, Chun MG, Vamos M, Zou H, Rong J, Miller CJ, Lou HJ, Raveendra-Panickar D, Yang CC, Sheffler DJ, et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol Cell 2015; 59(2):285-97; PMID:26118643; http://dx.doi.org/10.1016/j.molcel.2015.05.031
  • Ebos JM, Kerbel RS. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 2011; 8(4):210-21; PMID:21364524; http://dx.doi.org/10.1038/nrclinonc.2011.21
  • Price JT, Quinn JM, Sims NA, Vieusseux J, Waldeck K, Docherty SE, Myers D, Nakamura A, Waltham MC, Gillespie MT, et al. The heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, enhances osteoclast formation and potentiates bone metastasis of a human breast cancer cell line. Cancer Res 2005; 65(11):4929-38; PMID:15930315; http://dx.doi.org/10.1158/0008-5472.CAN-04-4458
  • Paraiso KH, Das Thakur M, Fang B, Koomen JM, Fedorenko IV, John JK, Tsao H, Flaherty KT, Sondak VK, Messina JL, et al. Ligand-independent EPHA2 signaling drives the adoption of a targeted therapy-mediated metastatic melanoma phenotype. Cancer Discov 2015; 5(3):264-73; PMID:25542447; http://dx.doi.org/10.1158/2159-8290.CD-14-0293
  • Tenbaum SP, Ordóñez-Morán P, Puig I, Chicote I, Arqués O, Landolfi S, Fernández Y, Herance JR, Gispert JD, Mendizabal L, et al. β-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med 2012; 18(6):892-901; PMID:22610277; http://dx.doi.org/10.1038/nm.2772
  • Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? Nat Rev Cancer 2014; 14(11):709-21; PMID:25342630; http://dx.doi.org/10.1038/nrc3803
  • Wallace DC. Mitochondria and cancer. Nat Rev Cancer 2012; 12(10):685-98; PMID:23001348; http://dx.doi.org/10.1038/nrc3365
  • Alirol E, Martinou JC. Mitochondria and cancer: is there a morphological connection? Oncogene 2006; 25(34):4706-16; PMID:16892084; http://dx.doi.org/10.1038/sj.onc.1209600
  • Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science 2012; 337(6098):1062-5; PMID:22936770; http://dx.doi.org/10.1126/science.1219855
  • Desai SP, Bhatia SN, Toner M, Irimia D. Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophys J 2013; 104(9):2077-88; PMID:23663851; http://dx.doi.org/10.1016/j.bpj.2013.03.025
  • Attanasio F, Caldieri G, Giacchetti G, van Horssen R, Wieringa B, Buccione R. Novel invadopodia components revealed by differential proteomic analysis. Eur J Cell Biol 2011; 90(2-3):115-27; PMID:20609496; http://dx.doi.org/10.1016/j.ejcb.2010.05.004
  • Ferreira-da-Silva A, Valacca C, Rios E, Pópulo H, Soares P, Sobrinho-Simões M, Scorrano L, Máximo V, Campello S. Mitochondrial dynamics protein Drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration. PLoS One 2015; 10(3):e0122308; PMID:25822260; http://dx.doi.org/10.1371/journal.pone.0122308
  • Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, Abel PW, Tu Y. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 2013; 32(40):4814-24; PMID:23128392; http://dx.doi.org/10.1038/onc.2012.494
  • Infante AS, Stein MS, Zhai Y, Borisy GG, Gundersen GG. Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. J Cell Sci 2000; 113 (Pt 22):3907-19; PMID:11058078
  • Chen Y, Sheng ZH. Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J Cell Biol 2013; 202(2):351-64; PMID:23857772; http://dx.doi.org/10.1083/jcb.201302040
  • Yang X, Kovalenko OV, Tang W, Claas C, Stipp CS, Hemler ME. Palmitoylation supports assembly and function of integrin-tetraspanin complexes. J Cell Biol 2004; 167(6):1231-40; PMID:15611341; http://dx.doi.org/10.1083/jcb.200404100
  • Wang, D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer 2010; 10(3):181-93; PMID:20168319; http://dx.doi.org/10.1038/nrc2809
  • Godoy JA, Arrázola MS, Ordenes D, Silva-Alvarez C, Braidy N, Inestrosa NC. Wnt-5a ligand modulates mitochondrial fission-fusion in rat hippocampal neurons. J Biol Chem 2014; 289(52):36179-93; PMID:25336659; http://dx.doi.org/10.1074/jbc.M114.557009
  • Hahn WS, Kuzmicic J, Burrill JS, Donoghue MA, Foncea R, Jensen MD, Lavandero S, Arriaga EA, Bernlohr DA. Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics. Am J Physiol Endocrinol Metab 2014; 306(9):E1033-45; PMID:24595304; http://dx.doi.org/10.1152/ajpendo.00422.2013
  • Ryu SW, Yoon J, Yim N, Choi K, Choi C. Downregulation of OPA3 is responsible for transforming growth factor-β-induced mitochondrial elongation and F-actin rearrangement in retinal pigment epithelial ARPE-19 cells. PLoS One 2013; 8(5):e63495; PMID:23658835; http://dx.doi.org/10.1371/journal.pone.0063495
  • Todd LR, Damin MN, Gomathinayagam R, Horn SR, Means AR, Sankar U. Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells. Mol Biol Cell 2010; 21(7):1225-36; PMID:20147447; http://dx.doi.org/10.1091/mbc.E09-11-0937
  • Beck H, Flynn K, Lindenberg KS, Schwarz H, Bradke F, Di Giovanni S, Knöll B. Serum response factor (SRF)-cofilin-actin signaling axis modulates mitochondrial dynamics. Proc Natl Acad Sci U S A 2012; 109(38):E2523-32; PMID:22927399; http://dx.doi.org/10.1073/pnas.1208141109
  • Kim H, Scimia MC, Wilkinson D, Trelles RD, Wood MR, Bowtell D, Dillin A, Mercola M, Ronai ZA. Fine-tuning of Drp1/Fis1 availability by AKAP121/Siah2 regulates mitochondrial adaptation to hypoxia. Mol Cell 2011; 44(4):532-44; PMID:22099302; http://dx.doi.org/10.1016/j.molcel.2011.08.045
  • Han XJ, Yang ZJ, Jiang LP, Wei YF, Liao MF, Qian Y, Li Y, Huang X, Wang JB, Xin HB, et al. Mitochondrial dynamics regulates hypoxia-induced migration and antineoplastic activity of cisplatin in breast cancer cells. Int J Oncol 2015; 46(2):691-700; PMID:25434519
  • Li Y, Lim S, Hoffman D, Aspenstrom P, Federoff HJ, Rempe DA. HUMMR, a hypoxia- and HIF-1alpha-inducible protein, alters mitochondrial distribution and transport. J Cell Biol 2009; 185(6):1065-81; PMID:19528298; http://dx.doi.org/10.1083/jcb.200811033
  • Zanelli SA, Trimmer PA, Solenski NJ. Nitric oxide impairs mitochondrial movement in cortical neurons during hypoxia. J Neurochem 2006; 97(3):724-36; PMID:16606371; http://dx.doi.org/10.1111/j.1471-4159.2006.03767.x
  • Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci U S A 2011; 108(25):10190-5; PMID:21646527; http://dx.doi.org/10.1073/pnas.1107402108
  • Hsu PP, Sabatini DM. Cancer cell metabolism: warburg and beyond. Cell 2008; 134(5):703-7; PMID:18775299; http://dx.doi.org/10.1016/j.cell.2008.08.021
  • Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A 2010; 107(19):8788-93; PMID:20421486; http://dx.doi.org/10.1073/pnas.1003428107
  • Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458(7239):762-5; PMID:19219026; http://dx.doi.org/10.1038/nature07823
  • Morita M, Gravel SP, Chénard V, Sikström K, Zheng L, Alain T, Gandin V, Avizonis D, Arguello M, Zakaria C, et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab 2013; 18(5):698-711; PMID:24206664; http://dx.doi.org/10.1016/j.cmet.2013.10.001
  • Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sánchez N, Marchesini M, Carugo A, Green T, Seth S, Giuliani V, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 2014; 514(7524):628-32; PMID:25119024; http://dx.doi.org/10.1038/nature13611
  • Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, Speicher D, Körbel C, Laschke MW, Gimotty PA, Philipp SE, et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell 2013; 23(6):811-25; PMID:23764003; http://dx.doi.org/10.1016/j.ccr.2013.05.003
  • Chae YC, Angelin A, Lisanti S, Kossenkov AV, Speicher KD, Wang H, Powers JF, Tischler AS, Pacak K, Fliedner S, et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun 2013; 4:2139; PMID:23842546; http://dx.doi.org/10.1038/ncomms3139
  • Cole A, Wang Z, Coyaud E, Voisin V, Gronda M, Jitkova Y, Mattson R, Hurren R, Babovic S, Maclean N, et al. Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 2015; 27(6):864-76; PMID:26058080; http://dx.doi.org/10.1016/j.ccell.2015.05.004
  • Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 2010; 9(6):447-64; PMID:20467424; http://dx.doi.org/10.1038/nrd3137
  • Kang BH, Plescia J, Song HY, Meli M, Colombo G, Beebe K, Scroggins B, Neckers L, Altieri DC, et al. Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90. J Clin Invest 2009; 119(3):454-64; PMID:19229106; http://dx.doi.org/10.1172/JCI37613
  • Kang BH, Plescia J, Dohi T, Rosa J, Doxsey SJ, Altieri DC. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 2007; 131(2):257-70; PMID:17956728; http://dx.doi.org/10.1016/j.cell.2007.08.028
  • Chae YC, Caino MC, Lisanti S, Ghosh JC, Dohi T, Danial NN, Villanueva J, Ferrero S, Vaira V, Santambrogio L, et al. Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s. Cancer Cell 2012; 22(3):331-44; PMID:22975376; http://dx.doi.org/10.1016/j.ccr.2012.07.015
  • Joo JH, Dorsey FC, Joshi A, Hennessy-Walters KM, Rose KL, McCastlain K, Zhang J, Iyengar R, Jung CH, Suen DF, et al. Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Mol Cell 2011; 43(4):572-85; PMID:21855797; http://dx.doi.org/10.1016/j.molcel.2011.06.018
  • Siegelin MD, Dohi T, Raskett CM, Orlowski GM, Powers CM, Gilbert CA, Ross AH, Plescia J, Altieri DC. Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. J Clin Invest 2011; 121(4):1349-60; PMID:21364280; http://dx.doi.org/10.1172/JCI44855
  • Kang BH, Siegelin MD, Plescia J, Raskett CM, Garlick DS, Dohi T, Lian JB, Stein GS, Languino LR, Altieri DC. Preclinical characterization of mitochondria-targeted small molecule hsp90 inhibitors, gamitrinibs, in advanced prostate cancer. Clin Cancer Res 2010; 16(19):4779-88; PMID:20876793; http://dx.doi.org/10.1158/1078-0432.CCR-10-1818

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.