845
Views
13
CrossRef citations to date
0
Altmetric
Report

Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis

, &
Pages 3488-3497 | Received 06 Jul 2015, Accepted 07 Sep 2015, Published online: 13 Nov 2015

References

  • Palkova Z, Janderova B, Gabriel J, Zikanova B, Pospisek M, Forstova J. Ammonia mediates communication between yeast colonies. Nature 1997; 390:532-6; PMID:9394006; http://dx.doi.org/10.1038/37398
  • Palkova Z, Forstova J. Yeast colonies synchronise their growth and development. J Cell Sci 2000; 113:1923-8; PMID:10806103
  • Palkova Z, Devaux F, Ricicova M, Minarikova L, Le Crom S, Jacq C. Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 2002; 13:3901-14; PMID:12429834; http://dx.doi.org/10.1091/mbc.E01-12-0149
  • Palkova Z, Wilkinson D, Vachova L. Aging and differentiation in yeast populations: elders with different properties and functions. FEMS Yeast Res 2014; 14:96-108; PMID:24119061; http://dx.doi.org/10.1111/1567-1364.12103
  • Vachova L, Hatakova L, Cap M, Pokorna M, Palkova Z. Rapidly developing yeast microcolonies differentiate in a similar way to aging giant colonies. Oxid Med Cell Longev 2013; 2013:102485; PMID:23970946; http://dx.doi.org/10.1155/2013/102485
  • Cap M, Stepanek L, Harant K, Vachova L, Palkova Z. Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism. Mol Cell 2012; 46:436-48; PMID:22560924; http://dx.doi.org/10.1016/j.molcel.2012.04.001
  • Vachova L, Kucerova H, Devaux F, Ulehlova M, Palkova Z. Metabolic diversification of cells during the development of yeast colonies. Environ Microbiol 2009; 11:494-504; PMID:19196279; http://dx.doi.org/10.1111/j.1462-2920.2008.01789.x
  • Vachova L, Chernyavskiy O, Strachotova D, Bianchini P, Burdikova Z, Fercikova I, Kubinova L, Palkova Z. Architecture of developing multicellular yeast colony: Spatio-temporal expression of Ato1p ammonium exporter. Environ Microbiol 2009; 11:1866-77; PMID:19302539; http://dx.doi.org/10.1111/j.1462-2920.2009.01911.x
  • DeBerardinis RJ, Cheng T. Q's next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 2010; 29:313-24; PMID:19881548; http://dx.doi.org/10.1038/onc.2009.358
  • Vachova L, Cap M, Palkova Z. Yeast colonies: A model for studies of aging, environmental adaptation, and longevity. Oxid Med Cell Longev 2012; 2012:601836; PMID:22928081; http://dx.doi.org/10.1155/2012/601836
  • DeRisi JL, Iyer VR, Brown PO. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997; 278:680-6; PMID:9381177; http://dx.doi.org/10.1126/science.278.5338.680
  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 2000; 11:4241-57; PMID:11102521; http://dx.doi.org/10.1091/mbc.11.12.4241
  • van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: The MTT assay. Methods Mol Biol 2011; 731:237-45; PMID:21516412; http://dx.doi.org/10.1007/978-1-61779-080-5_20
  • Chen W, Gueron M. The inhibition of bovine heart hexokinase by 2-deoxy-d-glucose-6-phosphate: characterization by 31P NMR and metabolic implications. Biochimie 1992; 74:867-73; PMID:1467345; http://dx.doi.org/10.1016/0300-9084(92)90070-U
  • Wick AN, Drury DR, Nakada HI, Wolfe JB. Localization of the primary metabolic block produced by 2-deoxyglucose. J Biol Chem 1957; 224:963-9; PMID:13405925
  • Williamson JR. Glycolytic control mechanisms III. Effects of iodoacetamide and fluoroacetate on glucose metabolism in the perfused rat heart. J Biol Chem 1967; 242:4476-85; PMID:4229046
  • Dresel K. Über die Wirkung der arsenigen Säure auf Atmung und Gärung. Biochem Z 1926; 178:70-4
  • Huijing F, Slater E. The use of oligomycin as an inhibitor of oxidative phosphorylation. J Biochem 1961; 49:493-501; PMID:13716716
  • Slater E. The mechanism of action of the respiratory inhibitor, antimycin. Biochim Biophys Acta 1973; 301:129-54; PMID:4358868; http://dx.doi.org/10.1016/0304-4173(73)90002-5
  • Ingledew WJ, Ohnishi T. The probable site of action of thenolytrifluoracetone on the respiratory chain. Biochem J 1977; 164:617-20; PMID:196591; http://dx.doi.org/10.1042/bj1640617
  • Farrow BG, Dawson AP. Investigation of the interaction of triethyltin with rat liver mitochondria using binding studies and Mössbauer spectroscopy. Eur J Biochem 1978; 86:85-95; PMID:26563; http://dx.doi.org/10.1111/j.1432-1033.1978.tb12287.x
  • Dombek KM, Ingram LO. Ethanol production during batch fermentation with Saccharomyces cerevisiae: changes in glycolytic enzymes and internal pH. Appl Environ Microbiol 1987; 53:1286-91; PMID:3300550
  • van Hoek P, de Hulster E, van Dijken JP, Pronk JT. Fermentative capacity in high-cell-density fed-batch cultures of baker's yeast. Biotechnol Bioeng 2000; 68:517-23; PMID:10797237; http://dx.doi.org/10.1002/(SICI)1097-0290(20000605)68:5<517::AID-BIT5>3.0.CO;2-O
  • van Hoek P, van Dijken JP, Pronk JT. Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. Enzyme Microb Technol 2000; 26:724-36; PMID:10862878; http://dx.doi.org/10.1016/S0141-0229(00)00164-2
  • Miller SM, Magasanik B. Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J Bacteriol 1990; 172:4927-35; PMID:1975578
  • DeLuna A, Avendaño A, Riego L, González A. NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae : Purification, kinetic properties and physiological role. J Biol Chem 2001; 276:43775-83; PMID:11562373; http://dx.doi.org/10.1074/jbc.M107986200
  • Moore D. Effects of hexose analogues on fungi: Mechanisms of inhibition and of resistance. New Phytologist 1981; 87:487-515; http://dx.doi.org/10.1111/j.1469-8137.1981.tb03221.x
  • Liu H, Lightfoot R, Stevens JL. Activation of heat shock factor by alkylating agents is triggered by glutathione depletion and oxidation of protein thiols. J Biol Chem 1996; 271:4805-12; PMID:8617749; http://dx.doi.org/10.1074/jbc.271.9.4805
  • Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 2007; 5:265-77; PMID:17403371; http://dx.doi.org/10.1016/j.cmet.2007.02.009
  • Lavoie H, Whiteway M. Increased respiration in the sch9D mutant is required for increasing chronological life span but not replicative life span. Eukaryot Cell 2008; 7:1127-35; PMID:18469137; http://dx.doi.org/10.1128/EC.00330-07
  • Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 2002; 418:344-8; PMID:12124627; http://dx.doi.org/10.1038/nature00829
  • Pan Y, Shadel GS. Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density. Aging 2009; 1:131-45; PMID:20157595
  • Traven A, Jänicke A, Harrison P, Swaminathan A, Seemann T, Beilharz TH. Transcriptional profiling of a yeast colony provides new insight into the heterogeneity of multicellular fungal communities. PloS One 2012; 7:e46243; PMID:23029448; http://dx.doi.org/10.1371/journal.pone.0046243
  • Wei M, Fabrizio P, Madia F, Hu J, Ge H, Li LM, Longo VD. Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet 2009; 5:8
  • Hachinohe M, Yamane M, Akazawa D, Ohsawa K, Ohno M, Terashita Y, Masumoto H. A reduction in age-enhanced gluconeogenesis extends lifespan. PloS One 2013; 8:e54011; PMID:23342062; http://dx.doi.org/10.1371/journal.pone.0054011
  • Lin SS, Manchester JK, Gordon JI. Enhanced gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae. J Biol Chem 2001; 276:36000-7; PMID:11461906; http://dx.doi.org/10.1074/jbc.M103509200
  • Adams DJ. Fungal cell wall chitinases and glucanases. Microbiology 2004; 150:2029-35; PMID:15256547; http://dx.doi.org/10.1099/mic.0.26980-0
  • Kuznetsov E, Kucerova H, Vachova L, Palkova Z. SUN family proteins Sun4p, Uth1p and Sim1p are secreted from Saccharomyces cerevisiae and produced dependently on oxygen level. PloS One 2013; 8:e73882; PMID:24040106; http://dx.doi.org/10.1371/journal.pone.0073882
  • Brauer MJ, Saldanha AJ, Dolinski K, Botstein D. Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures. Mol Biol Cell 2005; 16:2503-17; PMID:15758028; http://dx.doi.org/10.1091/mbc.E04-11-0968
  • Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem 2005; 339:69-72; PMID:15766712; http://dx.doi.org/10.1016/j.ab.2004.12.001
  • Goward CR, Hartwell R, Atkinson T, Scawen MD. The purification and characterization of glucokinase from the thermophile Bacillus stearothermophilus. Biochem J 1986; 237:415-20; PMID:3099754; http://dx.doi.org/10.1042/bj2370415
  • Bergmeyer HU, Gawehn K, Grassl M. Methods of Enzymatic Analysis. New York, NY, USA: Academic Press, 1974:501-3
  • Clifton D, Weinstock SB, Fraenkel DG. Glycolysis mutants in Saccharomyces cerevisiae. Genetics 1978; 88:1-11; PMID:147195
  • Bergmeyer HU, Gawehn, K, Grassl, M. Methods of Enzymatic Analysis. New York, NY, USA: Academic Press, 1974:430
  • Krietsch WKG, Bücher T. Three-Phosphoglycerate kinase from rabbit sceletal muscle and yeast. Eur J Biochem 1970; 17:568-80; PMID:5493986; http://dx.doi.org/10.1111/j.1432-1033.1970.tb01202.x
  • Bergmeyer HU, Gawehn K, Grassl M. Methods of Enzymatic Analysis. New York, NY, USA: Academic Press, 1974:509-10
  • Bergmeyer HU, Gawehn K, Grassl M. Methods of Enzymatic Analysis. New York, NY, USA: Academic Press, 1974:449
  • Postma E, Verduyn C, Scheffers WA, Van Dijken JP. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Env Microbiol 1989; 55:468-77
  • Bostian KA, Betts GF. Rapid purification and properties of potassium-activated aldehyde dehydrogenase from Saccharomyces cerevisiae. Biochem J 1978; 173:773-86; PMID:213051; http://dx.doi.org/10.1042/bj1730773
  • Dickinson FM. The purification and some properties of the Mg2+-activated cytosolic aldehyde dehydrogenase of Saccharomyces cerevisiae. Biochem J 1996; 315:393; PMID:8615805; http://dx.doi.org/10.1042/bj3150393
  • Rippa M, Signorini M. Six-Phosphogluconate dehydrogenase from Candida utilis. Methods Enzymol 1975; 41:237-40; PMID:236443; http://dx.doi.org/10.1016/S0076-6879(75)41054-0
  • Van Schaftingen E, Hers HG. Inhibition of fructose-1, 6-bisphosphatase by fructose 2, 6-biphosphate. Proc Natl Acad Sci U S A 1981; 78:2861-3; PMID:6265919; http://dx.doi.org/10.1073/pnas.78.5.2861
  • Srere PA. Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. In: John ML, ed. Methods in Enzymology: Academic Press, London, UK, 1969:3-11
  • Morrison JF. The activation of aconitase by ferrous ions and reducing agents. Biochem J 1954; 58:685-92; PMID:13230022; http://dx.doi.org/10.1042/bj0580685
  • Illingworth JA. Purification of yeast isocitrate dehydrogenase. Biochem J 1972; 129:1119-24; PMID:4571176; http://dx.doi.org/10.1042/bj1291119
  • Loftus TM, Hall LV, Anderson SL, McAlister-Henn L. Isolation, characterization, and disruption of the yeast gene encoding cytosolic NADP-specific isocitrate dehydrogenase. Biochemistry 1994; 33:9661-7; PMID:8068643; http://dx.doi.org/10.1021/bi00198a035
  • Frieden C, Bock RM, Alberty RA. Studies of the enzyme fumarase. II.1 Isolation and physical properties of crystalline enzyme. J Am Chem Soc 1954; 76:2482-4; http://dx.doi.org/10.1021/ja01638a052
  • Bergmeyer HU, Gawehn K, Grassl M. Methods of Enzymatic Analysis. New York, NY, USA: Academic Press, 1974:485-6
  • Chell RM, Sundaram TK, Wilkinson AE. Isolation and characterization of isocitrate lyase from a thermophilic Bacillus sp. Biochem J 1978; 173:165-77; PMID:687365; http://dx.doi.org/10.1042/bj1730165
  • Doherty D. L-glutamate dehydrogenases (yeast). In: Herbert Tabor CWT, ed. Methods in Enzymology: Academic Press, London, UK, 1970:850-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.