1,317
Views
17
CrossRef citations to date
0
Altmetric
Report

Direct reprogramming of human fibroblasts into sweat gland-like cells

, , , , , , & show all
Pages 3498-3505 | Received 10 Jul 2015, Accepted 07 Sep 2015, Published online: 13 Nov 2015

References

  • Xu Y, Huang S, Ma K, Fu X, Han W, Sheng Z. Promising new potential for mesenchymal stem cells derived from human umbilical cord wharton's jelly: sweat gland cell-like differentiative capacity. J Tissue Eng Regen Med 2012; 6: 645-54; PMID:21916019; http://dx.doi.org/10.1002/term.468
  • Li H, Chen L, Zhang M, Tang S, Fu X. Three-dimensional culture and identification of human eccrine sweat glands in matrigel basement membrane matrix. Cell Tissue Res 2013; 354: 897-902; PMID:23996202; http://dx.doi.org/10.1007/s00441-013-1718-3
  • Lu CP, Polak L, Rocha AS, Amalia Pasolli H, Chen S, Sharma N. Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 2012; 1:136-50; http://dx.doi.org/10.1016/j.cell.2012.04.045
  • Plikus MV, Gay DL, Treffeisen E, Wang A, Supapannachart RJ, Cotsarelis G. Epithelial stem cells and implications for wound repair. Cell Dev 2012; 23:946-53
  • Salem H, Ismail M, Seify H. Adult Gland Derived Stem Cells (Gdscs); Potentials, Hurdles and Expectations. J Stem Cell Res Ther 2014; 4:2
  • Simeonov KP, Uppal H. Direct reprogramming of human fibroblasts to hepatocyte-like cells by synthetic modified mRNAs. PloS One 2014; 9:e100134; PMID:24963715; http://dx.doi.org/10.1371/journal.pone.0100134
  • Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010; 463: 1035-41; PMID:20107439; http://dx.doi.org/10.1038/nature08797
  • Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 2012; 485: 599-604; PMID:22660318; http://dx.doi.org/10.1038/nature11139
  • Schmidt-Ullrich R, Tobin DJ, Lenhard D, Schneider P, Paus R, Scheidereit C. NF-kappaB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth. Development 2006; 133:1045-57; PMID:16481354; http://dx.doi.org/10.1242/dev.02278
  • Zhang YH, Tomann P, Andl T, Gallant NM, Huelsken J, Jerchow B, Birchmeier., Paus R, Piccolo S, Mikkola ML et al. Reciprocal requirements for EDA/EDAR/NF-κB and Wnt/β-catenin signaling pathways in hair follicle induction. Dev Cell 2009; 1: 49-61; http://dx.doi.org/10.1016/j.devcel.2009.05.011
  • Klika V, Baker RE, Headon D, Gaffney EA. The Influence of Receptor-Mediated Interactions on Reaction-Diffusion Mechanisms of Cellular Self-organisation. Bull Math Biol 2012;74:935-57; PMID:22072186; http://dx.doi.org/10.1007/s11538-011-9699-4
  • Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS. NF-κB Controls Cell Growth and Differentiation through Transcriptional Regulation of Cyclin D1. Mol Cell Biol 1999; 19:5785-99; PMID:10409765
  • Behrens J. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 1996; 382:638-42; PMID:8757136; http://dx.doi.org/10.1038/382638a0
  • Fu Y, Zhu HY, Wu W, Xu JD, Chen TM, Xu B, Qian SX, Li JY, Liu P. Clinical significance of lymphoid enhancer-binding factor 1 expression in acute myeloid leukemia. Leuk Lymphoma 2014; 55:371-7; PMID:23713453; http://dx.doi.org/10.3109/10428194.2013.805759
  • Karumbayaram S, Novitch BG, Patterson M, Umbach JA, Richter L, Lindgren A, Conway AE, Clark AT, Goldman SA, Plath K et al. Directed Differentiation of Human- Induced Pluripotent Stem Cells Generates Active Motor Neurons. Stem Cells 2009; 27:806-11; PMID:19350680; http://dx.doi.org/10.1002/stem.31
  • Han DW, Tapia N, Hermann A, Hemmer K, Höing S, Araúzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S et al. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 2012; 10: 465-72; PMID:22445517; http://dx.doi.org/10.1016/j.stem.2012.02.021
  • Their M, Wörsdörfer P, Lakes YB, Gorris R, Herms S, Opitz T, Seiferling D, Quandel T, Hoffmann P, Nöthen MM, Brüstle O, Edenhofer F. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 2012; 10: 473-9; PMID:22445518; http://dx.doi.org/10.1016/j.stem.2012.03.003
  • Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 2012; 11:100-9; PMID:22683203; http://dx.doi.org/10.1016/j.stem.2012.05.018
  • Smith AW, Hoyne JD, Nguyen PK, McCreedy DA, Aly H, Efimov IR, Rentschler S, Elbert DL. Direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells using Yamanaka factors on engineered poly (ethylene glycol)(PEG) hydrogels. Biomaterials 2013; 34:6559-71; PMID:23773820; http://dx.doi.org/10.1016/j.biomaterials.2013.05.050
  • Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 2005; 19: 489-501; PMID:15713842; http://dx.doi.org/10.1101/gad.1248505
  • Li M, Suzuki K, Qu J, Saini P, Dubova I, Yi F, Lee J, Sancho-Martinez I, Liu GH, Izpisua Belmonte JC. Efficient correction of hemoglobinopathy-causing mutations by homologous recombination in integration-free patient iPSCs. Cell Res 2011; 21:1740; PMID:22105484; http://dx.doi.org/10.1038/cr.2011.186
  • Feng B, Ng JH, Heng JC, Ng HH. Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 2009; 4: 301-12; PMID:19341620; http://dx.doi.org/10.1016/j.stem.2009.03.005
  • Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R, Gantner BN, Dinner AR, Singh H. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 2006;126: 755-66; PMID:16923394; http://dx.doi.org/10.1016/j.cell.2006.06.052
  • Sekiya S, Suzuki A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 2011; 475: 390-3; PMID:21716291; http://dx.doi.org/10.1038/nature10263
  • Nam YJ, Song K, Luo X, Daniel E, Lambeth K, West K, Hill JA, DiMaio JM, Baker LA, Bassel-Duby R et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci 2013; 110:5588-93; http://dx.doi.org/10.1073/pnas.1301019110
  • Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 2012; 485:593-8; PMID:22522929; http://dx.doi.org/10.1038/nature11044
  • Torper O, Pfisterer U, Wolf DA, Pereira M, Lau S, Jakobsson J, Björklund A, Grealish S, Parmar M. Generation of induced neurons via direct conversion in vivo. Proc Natl Acad Sci 2013; 110:7038-43; http://dx.doi.org/10.1073/pnas.1303829110
  • Sato Y, Rifkin DB. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-β 1-like molecule by plasmin during co-culture. J Cell Biol 1989; 109: 309-15; http://dx.doi.org/10.1083/jcb.109.1.309
  • Planutiene M, Planutis K, Holcombe RF. Lymphoid enhancer-binding factor 1, a representative of vertebrate-specific Lef1/Tcf1 sub-family, is a Wnt-β-catenin pathway target gene in human endothelial cells which regulates matrix metalloproteinase-2 expression and promotes endothelial cell invasion. Vasc Cell 2011; 3: 28; PMID:22168911; http://dx.doi.org/10.1186/2045-824X-3-28
  • Cho SW, Kwak S, Woolley TE, Lee MJ, Kim EJ, Baker RE, Kim HJ, Shin JS, Tickle C, Maini PK et al. Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback loop for spatial patterning of the teeth. Development 2011; 138:1807-16; PMID:21447550; http://dx.doi.org/10.1242/dev.056051
  • Zhang RR, Oyajobi BO, Harris SE, Chen D, Tsao C, Deng HW, Zhao M. Wnt/β-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone 2013; 52: 145-56; PMID:23032104; http://dx.doi.org/10.1016/j.bone.2012.09.029
  • Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 2001; 105:533-45; PMID:11371349; http://dx.doi.org/10.1016/S0092-8674(01)00336-1
  • Bera A, Ghosh-Choudhury N, Dey N, Das F, Kasinath BS, Abbouda HE, Choudhurya GG. NF-κB -mediated cyclin d1 expression by microrna-21 influences renal cancer cell proliferation. Cell Signal 2013; 25:2575-86; http://dx.doi.org/10.1016/j.cellsig.2013.08.005
  • Lindemann RK, Newbold A, Whitecross KF, Cluse LA, Frew AJ, Ellis L, Williams S, Wiegmans AP, Dear AE, Scott CL. Analysis of the apoptotic and therapeutic activities of histone deacetylase inhibitors by using a mouse model of B cell lymphoma. Proc Natl Acad Sci 2007; 104:8071; PMID:17470784; http://dx.doi.org/10.1073/pnas.0702294104

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.