3,109
Views
37
CrossRef citations to date
0
Altmetric
Extra View

Meiotic DSB patterning: A multifaceted process

, &
Pages 13-21 | Received 10 Aug 2015, Accepted 12 Nov 2015, Published online: 15 Jan 2016

References

  • Lam I, Keeney S. Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb Perspect Biol 2015; 7:a016634; http://dx.doi.org/10.1101/cshperspect.a016634
  • Keeney S, Lange J, Mohibullah N. Self-organization of meiotic recombination initiation: general principles and molecular pathways. Annu Rev Genet 2014; 48:187-214; PMID:25421598; http://dx.doi.org/10.1146/annurev-genet-120213-092304
  • Khil PP, Smagulova F, Brick KM, Camerini-Otero RD, Petukhova GV. Sensitive mapping of recombination hotspots using sequencing-based detection of ssDNA. Genome Res 2012; 22:957-65; PMID:22367190; http://dx.doi.org/10.1101/gr.130583.111
  • Pan J, Sasaki M, Kniewel R, Murakami H, Blitzblau HG, Tischfield SE, Zhu X, Neale MJ, Jasin M, Socci ND, et al. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 2011; 144:719-31; PMID:21376234; http://dx.doi.org/10.1016/j.cell.2011.02.009
  • Pratto F, Brick K, Khil P, Smagulova F, Petukhova GV, Camerini-Otero RD. Recombination initiation maps of individual human genomes. Science 2014; 346:1256442-2; PMID:25395542; http://dx.doi.org/10.1126/science.1256442
  • Smagulova F, Gregoretti IV, Brick K, Khil P, Camerini-Otero RD, Petukhova GV. Genome-wide analysis reveals novel molecular features of mouse recombination hotspots. Nature 2011; 472:375-8; PMID:21460839; http://dx.doi.org/10.1038/nature09869
  • Fowler KR, Sasaki M, Milman N, Keeney S, Smith GR. Evolutionarily diverse determinants of meiotic DNA break and recombination landscapes across the genome. Genome Res 2014; 24:1650-64; PMID:25024163; http://dx.doi.org/10.1101/gr.172122.114
  • de Massy B. Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu Rev Genet 2013; 47:563-99; PMID:24050176; http://dx.doi.org/10.1146/annurev-genet-110711-155423
  • Cooper TJ, Wardell K, Garcia V, Neale, MJ. Homeostatic regulation of meiotic DSB formation by ATM/ATR. Exp Cell Res 2014; 329:124-31; PMID:25116420; http://dx.doi.org/10.1016/j.yexcr.2014.07.016
  • Murakami H, Nicolas A. Locally, meiotic double-strand breaks targeted by Gal4BD-Spo11 occur at discrete sites with a sequence preference. Mol Cell Biol 2009; 29:3500-16; PMID:19380488; http://dx.doi.org/10.1128/MCB.00088-09
  • Prieler S, Penkner A, Borde V, Klein F. The control of Spo11's interaction with meiotic recombination hotspots. Genes Dev 2005; 19:255-69; PMID:15655113; http://dx.doi.org/10.1101/gad.321105
  • Choi K, Henderson IR. Meiotic Recombination Hotspots - a Comparative View. Plant J 2015; 83:52-61; PMID:25925869; http://dx.doi.org/10.1111/tpj.12870
  • Nishant KT, Rao MRS. Molecular features of meiotic recombination hot spots. Bioessays 2006; 28:45-56; PMID:16369948; http://dx.doi.org/10.1002/bies.20349
  • Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y, LeProust EM, Hughes TR, Lieb JD, Widom J, et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 2009; 458 362-6; PMID:19092803; http://dx.doi.org/10.1038/nature07667
  • Fan QQ, Petes TD. Relationship between nuclease-hypersensitive sites and meiotic recombination hot spot activity at the HIS4 locus of Saccharomyces cerevisiae. Mol Cell Biol 1996; 16:2037-43; PMID:8628269; http://dx.doi.org/10.1128/MCB.16.5.2037
  • Kugou K, Fukuda T, Yamada S, Ito M, Sasanuma H, Mori S, Katou Y, Itoh T, Matsumoto K, Shibata T, et al. Rec8 guides canonical Spo11 distribution along yeast meiotic chromosomes. Mol Biol Cell 2009; 20:3064-76; PMID:19439448; http://dx.doi.org/10.1091/mbc.E08-12-1223
  • Fukuda T, Kugou K, Sasanuma H, Shibata T, Ohta K. Targeted induction of meiotic double-strand breaks reveals chromosomal domain-dependent regulation of Spo11 and interactions among potential sites of meiotic recombination. Nucleic Acids Res 2008; 36:984-97; PMID:18096626; http://dx.doi.org/10.1093/nar/gkm1082
  • Robine N, Uematsu N, Amiot F, Gidrol X, Barillot E, Nicolas A, Borde V. Genome-wide redistribution of meiotic double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:1868-80; PMID:17189430; http://dx.doi.org/10.1128/MCB.02063-06
  • Baudat F, Nicolas A. Clustering of meiotic double-strand breaks on yeast chromosome III. Proc Natl Acad Sci 1997; 94:5213-8; PMID:9144217; http://dx.doi.org/10.1073/pnas.94.10.5213
  • Gerton JL, DeRisi J, Shroff R, Lichten M, Brown PO, Petes TD. Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2000; 97:11383-90; PMID:11027339; http://dx.doi.org/10.1073/pnas.97.21.11383
  • Blat Y, Protacio RU, Hunter N, Kleckner N. Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 2002; 111:791-802; PMID:12526806; http://dx.doi.org/10.1016/S0092-8674(02)01167-4
  • Kleckner N. Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma 2006; 115 175-94; PMID:16555016; http://dx.doi.org/10.1007/s00412-006-0055-7
  • Borde V, de Massy B. Programmed induction of DNA double strand breaks during meiosis: setting up communication between DNA and the chromosome structure. Curr Opin Genet Dev 2013; 23:147-55; PMID:23313097; http://dx.doi.org/10.1016/j.gde.2012.12.002
  • Kee K, Protacio RU, Arora C, Keeney S. Spatial organization and dynamics of the association of Rec102 and Rec104 with meiotic chromosomes. EMBO J 2004; 23:1815-24; PMID:15044957; http://dx.doi.org/10.1038/sj.emboj.7600184
  • Zickler D, Kleckner N. Meiotic Chromosomes: Integrating Structure and Function. Annu Rev Genet 1999; 603-754; PMID:10690419; http://dx.doi.org/10.1146/annurev.genet.33.1.603
  • Panizza S, Mendoza MA, Berlinger M, Huang L, Nicolas A, Shirahige K, Klein F. Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell 2011; 146:372-83; PMID:21816273; http://dx.doi.org/10.1016/j.cell.2011.07.003
  • Sommermeyer V, Béneut C, Chaplais E, Serrentino ME, Borde V. Spp1, a member of the Set1 Complex, promotes meiotic DSB formation in promoters by tethering histone H3K4 methylation sites to chromosome axes. Mol Cell 2013; 49:43-54; PMID:23246437; http://dx.doi.org/10.1016/j.molcel.2012.11.008
  • Acquaviva L, Székvölgyi L, Dichtl B, Dichtl BS, de La Roche Saint André C, Nicolas A, Géli V. The COMPASS subunit Spp1 links histone methylation to initiation of meiotic recombination. Science 2013; 339:215-8; PMID:23160953; http://dx.doi.org/10.1126/science.1225739
  • Borde V, Székvölgyi L, Dichtl B, Dichtl BS, de La Roche Saint André C, Nicolas A, Géli V. Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J 2009; 28:99-111; PMID:19078966; http://dx.doi.org/10.1038/emboj.2008.257
  • Tischfield SE, Keeney S. Scale matters: the spatial correlation of yeast meiotic DNA breaks with histone H3 trimethylation is driven largely by independent colocalization at promoters. Cell Cycle 2012; 11:1496-503; PMID:22433953; http://dx.doi.org/10.4161/cc.19733
  • Sun X, Huang L, Markowitz TE, Blitzblau HG, Chen D, Klein F, Hochwagen A. Transcription dynamically patterns the meiotic chromosome-axis interface. Elife 2015; 4:e07424; http://dx.doi.org/10.7554/eLife.07424
  • Champeimont R, Carbone A. SPoRE: a mathematical model to predict double strand breaks and axis protein sites in meiosis. BMC Bioinformatics 2014; 15:391; PMID:25495332; http://dx.doi.org/10.1186/s12859-014-0391-1
  • Novak I, Wang H, Revenkova E, Jessberger R, Scherthan H, Höög C. Cohesin Smc1beta determines meiotic chromatin axis loop organization. J Cell Biol. 2008; 180:83-90; PMID:18180366; http://dx.doi.org/10.1083/jcb.200706136
  • Glynn EF, Megee PC, Yu HG, Mistrot C, Unal E, Koshland DE, DeRisi JL, Gerton JL. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2004; 2:E259; PMID:15309048; http://dx.doi.org/10.1371/journal.pbio.0020259
  • Ito M, Kugou K, Fawcett JA, Mura S, Ikeda S, Innan H, Ohta K. Meiotic recombination cold spots in chromosomal cohesion sites. Genes Cells 2014; 19:359-73; PMID:24635992; http://dx.doi.org/10.1111/gtc.12138
  • Kim KP, Weiner BM, Zhang L, Jordan A, Dekker J, Kleckner N. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 2010; 143:924-37; PMID:21145459; http://dx.doi.org/10.1016/j.cell.2010.11.015
  • Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 2010; 327:836-40; PMID:20044539; http://dx.doi.org/10.1126/science.1183439
  • Parvanov ED, Petkov PM, Paigen K. Prdm9 controls activation of mammalian recombination hotspots. Science 2010; 327:835; PMID:20044538; http://dx.doi.org/10.1126/science.1181495
  • Neale MJ. PRDM9 points the zinc finger at meiotic recombination hotspots. Genome Biol. 2010; 11:104; PMID:20210982; http://dx.doi.org/10.1186/gb-2010-11-2-104
  • Grey C, Barthès P, Chauveau-Le Friec G, Langa F, Baudat F, de Massy B. Mouse PRDM9 DNA-binding specificity determines sites of histone H3 lysine 4 trimethylation for initiation of meiotic recombination. PLoS Biol 2011; 9:e1001176; PMID:22028627; http://dx.doi.org/10.1371/journal.pbio.1001176
  • Buard J, Barthès P, Grey C, de Massy B. Distinct histone modifications define initiation and repair of meiotic recombination in the mouse. EMBO J 2009; 28:2616-24; PMID:19644444; http://dx.doi.org/10.1038/emboj.2009.207
  • Berg IL, Neumann R, Lam KW, Sarbajna S, Odenthal-Hesse L, May CA, Jeffreys AJ. PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans. Nat Genet 2010; 42:859-63; PMID:20818382; http://dx.doi.org/10.1038/ng.658
  • Brick K, Smagulova F, Khil P, Camerini-Otero RD, Petukhova GV. Genetic recombination is directed away from functional genomic elements in mice. Nature 2012; 485:642-5; PMID:22660327; http://dx.doi.org/10.1038/nature11089
  • Buard J, Rivals E, Dunoyer de Segonzac D, Garres C, Caminade P, de Massy B, Boursot P. Diversity of Prdm9 zinc finger array in wild mice unravels new facets of the evolutionary turnover of this coding minisatellite. PLoS One 2014; 9:e85021; PMID:24454780; http://dx.doi.org/10.1371/journal.pone.0085021
  • Zhang L, Kim KP, Kleckner NE, Storlazzi A. Meiotic double-strand breaks occur once per pair of (sister) chromatids and, via Mec1/ATR and Tel1/ATM, once per quartet of chromatids. Proc Natl Acad Sci USA 2011; 108:20036-41; PMID:22123968; http://dx.doi.org/10.1073/pnas.1117937108
  • Garcia V, Gray S, Allison RM, Cooper TJ, Neale MJ. Tel1(ATM)-mediated interference suppresses clustered meiotic double-strand-break formation. Nature 2015; 520:114-8; PMID:25539084; http://dx.doi.org/10.1038/nature13993
  • Paull TT. Mechanisms of ATM Activation. Annu Rev Biochem 2015; 84:711-38; PMID:25580527; http://dx.doi.org/10.1146/annurev-biochem-060614-034335
  • Gray S, Allison RM, Garcia V, Goldman ASH, Neale MJ. Positive regulation of meiotic DNA double-strand break formation by activation of the DNA damage checkpoint kinase Mec1(ATR). Open Biol 2013; 3:130019; PMID:23902647; http://dx.doi.org/10.1098/rsob.130019
  • Carballo JA, Panizza S, Serrentino ME, Johnson AL, Geymonat M, Borde V, Klein F, Cha RS. Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery. PLoS Genet 2013; 9:e1003545; PMID:23825959; http://dx.doi.org/10.1371/journal.pgen.1003545
  • Thacker D, Mohibullah N, Zhu X, Keeney S. Homologue engagement controls meiotic DNA break number and distribution. Nature 2014; 510:241-6; PMID:24717437; http://dx.doi.org/10.1038/nature13120
  • Kauppi L, Panizza S, Serrentino ME, Johnson AL, Geymonat M, Borde V, Klein F, Cha RS. Numerical constraints and feedback control of double-strand breaks in mouse meiosis. Genes Dev 2013; 27:873-86; PMID:23599345; http://dx.doi.org/10.1101/gad.213652.113
  • Zickler D, Kleckner N. Recombination, Pairing, and Synapsis of Homologs during Meiosis. Cold Spring Harb Perspect Biol 2015; 7:a016626; PMID:25986558; http://dx.doi.org/10.1101/cshperspect.a016626
  • Carballo JA, Johnson AL, Sedgwick SG, Cha RS. Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell 2008; 132:758-70; PMID:18329363; http://dx.doi.org/10.1016/j.cell.2008.01.035
  • Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 2010; 141:970-81; PMID:20550933; http://dx.doi.org/10.1016/j.cell.2010.04.038
  • Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 2013; 14:197-210; http://dx.doi.org/10.1038/nrm3546
  • Price BD, D’Andrea AD. Chromatin remodeling at DNA double-strand breaks. Cell 2013; 152:1344-54; PMID:23498941; http://dx.doi.org/10.1016/j.cell.2013.02.011
  • Lee CS, Lee K, Legube G, Haber JE. Dynamics of yeast histone H2A and H2B phosphorylation in response to a double-strand break. Nat Struct Mol Biol 2014; 21:103-9; PMID:24336221; http://dx.doi.org/10.1038/nsmb.2737
  • Shroff R, Arbel-Eden A, Pilch D, Ira G, Bonner WM, Petrini JH, Haber JE, Lichten M. Distribution and Dynamics of Chromatin Modification Induced by a Defined DNA Double-Strand Break. Curr Biol 2004; 14:1703-11; PMID:15458641; http://dx.doi.org/10.1016/j.cub.2004.09.047
  • Zhang L, Wang S, Yin S, Hong S, Kim KP, Kleckner N. Topoisomerase II mediates meiotic crossover interference. Nature 2014; 511:551-6; PMID:25043020; http://dx.doi.org/10.1038/nature13442
  • Jones GH, Franklin FCH. Meiotic crossing-over: obligation and interference. Cell 2006; 126:246-8; PMID:16873056; http://dx.doi.org/10.1016/j.cell.2006.07.010
  • Munz P. An analysis of interference in the fission yeast Schizosaccharomyces pombe. Genetics 1994; 137:701-7; PMID:8088515
  • Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, et al. The genome sequence of Schizosaccharomyces pombe. Nature 2002; 415:871-80; PMID:11859360; http://dx.doi.org/10.1038/nature724
  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, et al. Life with 6000 genes. Science 1996; 274, 546:563-7; http://dx.doi.org/10.1126/science.274.5287.546
  • Barlow C, Liyanage M, Moens PB, Tarsounas M, Nagashima K, Brown K, Rottinghaus S, Jackson SP, Tagle D, Ried T, et al. Atm deficiency results in severe meiotic disruption as early as leptonema of prophase I. Development 1998; 125:4007-17; PMID:9735362
  • Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F, Shiloh Y, Crawley JN, Ried T, Tagle D, et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 1996; 86:159-71; PMID:8689683; http://dx.doi.org/10.1016/S0092-8674(00)80086-0
  • Lange J, Pan J, Cole F, Thelen MP, Jasin M, Keeney S. ATM controls meiotic double-strand-break formation. Nature 2011; 479:237-40; PMID:22002603; http://dx.doi.org/10.1038/nature10508
  • Kauppi L, Barchi M, Baudat F, Romanienko PJ, Keeney S, Jasin M. Distinct properties of the XY pseudoautosomal region crucial for male meiosis. Science 2011; 331:916-20; PMID:21330546; http://dx.doi.org/10.1126/science.1195774
  • Wu TC, Lichten M. Factors that affect the location and frequency of meiosis-induced double-strand breaks in Saccharomyces cerevisiae. Genetics 1995; 140:55-66; PMID:7635308
  • Fan QQ, Xu F, White MA, Petes TD. Competition between adjacent meiotic recombination hotspots in the yeast Saccharomyces cerevisiae. Genetics 1997; 145:661-70; PMID:9055076
  • Maleki S, Neale MJ, Arora C, Henderson KA, Keeney S. Interactions between Mei4, Rec114, and other proteins required for meiotic DNA double-strand break formation in Saccharomyces cerevisiae. Chromosoma 2007; 116:471-86; PMID:17558514; http://dx.doi.org/10.1007/s00412-007-0111-y
  • Li J, Hooker GW, Roeder GS. Saccharomyces cerevisiae Mer2, Mei4 and Rec114 form a complex required for meiotic double-strand break formation. Genetics 2006; 173:1969-81; PMID:16783010; http://dx.doi.org/10.1534/genetics.106.058768
  • Martini E, Borde V, Legendre M, Audic S, Regnault B, Soubigou G, Dujon B, Llorente B. Genome-wide analysis of heteroduplex DNA in mismatch repair-deficient yeast cells reveals novel properties of meiotic recombination pathways. PLoS Genet 2011; 7:e1002305; PMID:21980306; http://dx.doi.org/10.1371/journal.pgen.1002305
  • Padmore R, Cao L, Kleckner N. Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 1991; 66:1239-56; PMID:1913808; http://dx.doi.org/10.1016/0092-8674(91)90046-2
  • Zickler D, Kleckner N. The leptotene-zygotene transition of meiosis. Annu Rev Genet 1998; 32:619-97; PMID:9928494; http://dx.doi.org/10.1146/annurev.genet.32.1.619
  • Stahl FW, Foss HM, Young LS, Borts RH, Abdullah MF, Copenhaver GP. Does crossover interference count in Saccharomyces cerevisiae? Genetics 2004; 168:35-48; PMID:15454525; http://dx.doi.org/10.1534/genetics.104.027789
  • Kumar R, Bourbon HM, de Massy B. Functional conservation of Mei4 for meiotic DNA double-strand break formation from yeasts to mice. Genes Dev. 2010; 24:1266-80; PMID:20551173
  • Auton A, Rui Li Y, Kidd J, Oliveira K, Nadel J, Holloway JK, Hayward JJ, Cohen PE, Greally JM, Wang J, et al. Genetic recombination is targeted towards gene promoter regions in dogs. PLoS Genet 2013; 9:e1003984; PMID:24348265; http://dx.doi.org/10.1371/journal.pgen.1003984
  • Muñoz-Fuentes V, Di Rienzo A, Vilà C. Prdm9, a major determinant of meiotic recombination hotspots, is not functional in dogs and their wild relatives, wolves and coyotes. PLoS One 2011; 6:e25498; http://dx.doi.org/10.1371/journal.pone.0025498
  • Axelsson E, Webster MT, Ratnakumar A, Ponting CP, Lindblad-Toh K. Death of PRDM9 coincides with stabilization of the recombination landscape in the dog genome. Genome Res 2012; 22:51-63; PMID:22006216; http://dx.doi.org/10.1101/gr.124123.111
  • Kaur T, Rockman MV. Crossover heterogeneity in the absence of hotspots in Caenorhabditis elegans. Genetics 2014; 196:137-48; PMID:24172135; http://dx.doi.org/10.1534/genetics.113.158857
  • Barnes TM, Kohara Y, Coulson A, Hekimi S. Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans. Genetics 1995; 141:159-79; PMID:8536965
  • Comeron JM, Ratnappan R, Bailin S. The many landscapes of recombination in Drosophila melanogaster. PLoS Genet 2012; 8:e1002905; PMID:23071443; http://dx.doi.org/10.1371/journal.pgen.1002905
  • Steiner WW, Steiner EM, Girvin AR, Plewik LE. Novel nucleotide sequence motifs that produce hotspots of meiotic recombination in Schizosaccharomyces pombe. Genetics 2009; 182:459-69; PMID:19363124; http://dx.doi.org/10.1534/genetics.109.101253
  • Yamada S, Ohta K, Yamada T. Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast. Nucleic Acids Res 2013; 41:3504-17; PMID:23382177; http://dx.doi.org/10.1093/nar/gkt049
  • Choi K, Zhao X, Kelly KA, Venn O, Higgins JD, Yelina NE, Hardcastle TJ, Ziolkowski PA, Copenhaver GP, Franklin FC, et al. Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat Genet 2013; 45:1327-36; PMID:24056716; http://dx.doi.org/10.1038/ng.2766
  • Drouaud J, Khademian H, Giraut L, Zanni V, Bellalou S, Henderson IR, Falque M, Mézard C. Contrasted Patterns of Crossover and Non-crossover at Arabidopsis thaliana Meiotic Recombination Hotspots. PLoS Genet 2013; 9:e1003922; PMID:24244190; http://dx.doi.org/10.1371/journal.pgen.1003922