1,510
Views
38
CrossRef citations to date
0
Altmetric
Perspective

miRNA-182 and the regulation of the glioblastoma phenotype - toward miRNA-based precision therapeutics

, &
Pages 3794-3800 | Received 21 Aug 2015, Accepted 07 Sep 2015, Published online: 23 Dec 2015

References

  • Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, et al., Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2007; 21(21): p. 2683-710; PMID:17974913; http://dx.doi.org/10.1101/gad.1596707
  • Kouri FM, Hurley LA, Daniel WL, Day ES, Hua Y, Hao L, Peng CY, Merkel TJ, Queisser MA, Ritner C, et al., miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev 2015; 29(7): p. 732-45; PMID:25838542; http://dx.doi.org/10.1101/gad.257394.114
  • Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, et al., Spherical Nucleic Acid Nanoparticle Conjugates as an RNAi-Based Therapy for Glioblastoma. Sci Transl Med 2013; 5(209): p. 209ra152; PMID:24174328; http://dx.doi.org/10.1126/scitranslmed.3006839
  • Mirkin CA, Stegh AH. Spherical nucleic acids for precision medicine. Oncotarget 2014; 5(1): p. 9-10; PMID:24398537; http://dx.doi.org/10.18632/oncotarget.1757
  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009; 11(3): p. 228-34; PMID:19255566; http://dx.doi.org/10.1038/ncb0309-228
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): p. 281-97; PMID:14744438; http://dx.doi.org/10.1016/S0092-8674(04)00045-5
  • Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011 12(12): p. 861-74; PMID:22094949; http://dx.doi.org/10.1038/nrg3074
  • Coolen M, Bally-Cuif L. MicroRNAs in brain development and physiology. Curr Opin Neurobiol 2009; 19(5): p. 461-70; PMID:19846291; http://dx.doi.org/10.1016/j.conb.2009.09.006
  • Wang W, Kwon EJ, Tsai LH. MicroRNAs in learning, memory, and neurological diseases. Learn Mem 2012 19(9): p. 359-68; PMID:22904366; http://dx.doi.org/10.1101/lm.026492.112
  • Schaefer A, O'Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, Greengard P. Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 2007; 204(7): p. 1553-8; PMID:17606634; http://dx.doi.org/10.1084/jem.20070823
  • Krichevsky AM, Sonntag KC, Isacson O, Kosik KS. Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 2006; 24(4): p. 857-64; PMID:16357340; http://dx.doi.org/10.1634/stemcells.2005-0441
  • Conaco C, Otto S, Han JJ, Mandel G. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 2006; 103(7): p. 2422-7; PMID:16461918; http://dx.doi.org/10.1073/pnas.0511041103
  • Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci 2008; 28(53): p. 14341-6; PMID:19118166; http://dx.doi.org/10.1523/JNEUROSCI.2390-08.2008
  • Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 2007; 27(3): p. 435-48; PMID:17679093; http://dx.doi.org/10.1016/j.molcel.2007.07.015
  • Cheng LC, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 2009; 12(4): p. 399-408; PMID:19287386; http://dx.doi.org/10.1038/nn.2294
  • Meng Y, Zhang Y, Tregoubov V, Janus C, Cruz L, Jackson M, Lu WY, MacDonald JF, Wang JY, Falls DL, et al., Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 2002; 35(1): p. 121-33; PMID:12123613; http://dx.doi.org/10.1016/S0896-6273(02)00758-4
  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME. A brain-specific microRNA regulates dendritic spine development. Nature 2006; 439(7074): p. 283-9; PMID:16421561; http://dx.doi.org/10.1038/nature04367
  • Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M, Khudayberdiev S, Leuschner PF, Busch CJ, Kane C, et al., A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 2009; 11(6): p. 705-16; PMID:19465924; http://dx.doi.org/10.1038/ncb1876
  • Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, Lodish HF, Lim B. MicroRNA-125b is a novel negative regulator of p53. Genes Dev 2009; 23(7): p. 862-76; PMID:19293287; http://dx.doi.org/10.1101/gad.1767609
  • Walker JC, Harl RM. microRNA-24a is required to repress apoptosis in the developing neural retina. Genes Dev 2009; 23(9): p. 1046-51; PMID:19372388; http://dx.doi.org/10.1101/gad.1777709
  • Silber J, James CD, Hodgson JG. microRNAs in gliomas: small regulators of a big problem. Neuromolecular Med 2009; 11(3): p. 208-22; PMID:19731102; http://dx.doi.org/10.1007/s12017-009-8087-9
  • Nagane M, Levitzki A, Gazit A, Cavenee WK, Huang HJ. Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proc Natl Acad Sci U S A 1998; 95(10): p. 5724-9; PMID:9576951; http://dx.doi.org/10.1073/pnas.95.10.5724
  • Stiles CD, Rowitch DH. Glioma stem cells: a midterm exam. Neuron 2008; 58(6): p. 832-46; PMID:18579075; http://dx.doi.org/10.1016/j.neuron.2008.05.031
  • Gilbertson RJ, Rich JN. Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 2007; 7(10): p. 733-6; PMID:17882276; http://dx.doi.org/10.1038/nrc2246
  • Kim TM, Huang W, Park R, Park PJ, Johnson MD. A developmental taxonomy of glioblastoma defined and maintained by MicroRNAs. Cancer Res 2011; 71(9): p. 3387-99; PMID:21385897; http://dx.doi.org/10.1158/0008-5472.CAN-10-4117
  • Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, Wang B, Wang G, Jia Z, Pu P, et al., Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest 2010; 90(2): p. 144-55; PMID:20048743; http://dx.doi.org/10.1038/labinvest.2009.126
  • Kwak HJ, Kim YJ, Chun KR, Woo YM, Park SJ, Jeong JA, Jo SH, Kim TH, Min HS, Chae JS, et al., Downregulation of Spry2 by miR-21 triggers malignancy in human gliomas. Oncogene 2011; 30(21): p. 2433-42; PMID:21278789; http://dx.doi.org/10.1038/onc.2010.620
  • Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, Krichevsky AM. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 2008; 28(17): p. 5369-80; PMID:18591254; http://dx.doi.org/10.1128/MCB.00479-08
  • Zhou X, Zhang J, Jia Q, Ren Y, Wang Y, Shi L, Liu N, Wang G, Pu P, You Y, et al., Reduction of miR-21 induces glioma cell apoptosis via activating caspase 9 and 3. Oncol Rep 2010; 24(1): p. 195-201; PMID:20514462
  • Gabriely G, Teplyuk NM, Krichevsky AM, Context effect: microRNA-10b in cancer cell proliferation, spread and death. Autophagy 2011; 7(11): p. 1384-6; PMID:21795860; http://dx.doi.org/10.4161/auto.7.11.17371
  • Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, Ligon KL, Kesari S, Esau C, Stephens RM, et al., Human glioma growth is controlled by microRNA-10b. Cancer Res 2011; 71(10): p. 3563-72; PMID:21471404; http://dx.doi.org/10.1158/0008-5472.CAN-10-3568
  • Guessous F, Alvarado-Velez M, Marcinkiewicz L, Zhang Y, Kim J, Heister S, Kefas B, Godlewski J, Schiff D, Purow B , et al., Oncogenic effects of miR-10b in glioblastoma stem cells. J Neurooncol 2013; 112(2): p. 153-63; PMID:23307328; http://dx.doi.org/10.1007/s11060-013-1047-0
  • Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, Sohn-Lee C, le Sage C, Agami R, Tuschl T, et al., The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 2009; 23(11): p. 1327-37; PMID:19487573; http://dx.doi.org/10.1101/gad.1777409
  • Kim H, Huang W, Jiang X, Pennicooke B, Park PJ, Johnson MD. Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci U S A 2010; 107(5): p. 2183-8; PMID:20080666; http://dx.doi.org/10.1073/pnas.0909896107
  • Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen TD, et al., MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 2009; 69(19): p. 7569-76; PMID:19773441; http://dx.doi.org/10.1158/0008-5472.CAN-09-0529
  • Silber J, Jacobsen A, Ozawa T, Harinath G, Pedraza A, Sander C, Holland EC, Huse JT. miR-34a repression in proneural malignant gliomas upregulates expression of its target PDGFRA and promotes tumorigenesis. PLoS One 2012; 7(3): p. e33844; PMID:22479456; http://dx.doi.org/10.1371/journal.pone.0033844
  • Genovese G, Ergun A, Shukla SA, Campos B, Hanna J, Ghosh P, Quayle SN, Rai K, Colla S, Ying H, et al., microRNA regulatory network inference identifies miR-34a as a novel regulator of TGF-beta signaling in glioblastoma. Cancer Discov 2012; 2(8): p. 736-49; PMID:22750848; http://dx.doi.org/10.1158/2159-8290.CD-12-0111
  • Cancer Genome Atlas Research, N., Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455(7216): p. 1061-8; PMID:18772890; http://dx.doi.org/10.1038/nature07385
  • Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK, Furnari FB, White FM. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci U S A 2007; 104(31): p. 12867-72; PMID:17646646; http://dx.doi.org/10.1073/pnas.0705158104
  • Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R, Stegh AH, Bradner JE, Ligon KL, Brennan C, et al., Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 2007; 318(5848): p. 287-90; PMID:17872411; http://dx.doi.org/10.1126/science.1142946
  • Boccaccio C, Comoglio PM. Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer 2006; 6(8): p. 637-45; PMID:16862193; http://dx.doi.org/10.1038/nrc1912
  • Boccaccio C, Comoglio PM. The MET oncogene in glioblastoma stem cells: implications as a diagnostic marker and a therapeutic target. Cancer Res 2013; 73(11): p. 3193-9; PMID:23695554; http://dx.doi.org/10.1158/0008-5472.CAN-12-4039
  • Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, et al., Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009; 15(6): p. 501-13; PMID:19477429; http://dx.doi.org/10.1016/j.ccr.2009.03.018
  • Boccaccio C, Comoglio PM. The MET oncogene in glioblastoma stem cells: implications as a diagnostic marker and a therapeutic target. Cancer Res 2013; 73(11): p. 3193-9; PMID:23695554; http://dx.doi.org/10.1158/0008-5472.CAN-12-4039
  • Rodgers JT, King KY, Brett JO, Cromie MJ, Charville GW, Maguire KK, Brunson C, Mastey N, Liu L, Tsai CR, et al., mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature 2014; 510(7505): p. 393-6; PMID:24870234
  • Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell 2006; 11(4): p. 441-50; PMID:17011485; http://dx.doi.org/10.1016/j.devcel.2006.09.009
  • Weston MD, Pierce ML, Jensen-Smith HC, Fritzsch B, Rocha-Sanchez S, Beisel KW, Soukup GA. MicroRNA-183 family expression in hair cell development and requirement of microRNAs for hair cell maintenance and survival. Dev Dyn 2011; 240(4): p. 808-19; PMID:21360794; http://dx.doi.org/10.1002/dvdy.22591
  • Qu Y, Li WC, Hellem MR, Rostad K, Popa M, McCormack E, Oyan AM, Kalland KH, Ke XS. MiR-182 and miR-203 induce mesenchymal to epithelial transition and self-sufficiency of growth signals via repressing SNAI2 in prostate cells. Int J Cancer 2013; 133(3): p. 544-55; PMID:23354685; http://dx.doi.org/10.1002/ijc.28056
  • Kiernan AE, Pelling AL, Leung KK, Tang AS, Bell DM, Tease C, Lovell-Badge R, Steel KP, Cheah KS. Sox2 is required for sensory organ development in the mammalian inner ear. Nature 2005; 434(7036): p. 1031-5; PMID:15846349; http://dx.doi.org/10.1038/nature03487
  • Brooker R, Hozumi K, Lewis J. Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development 2006; 133(7): p. 1277-86; PMID:16495313; http://dx.doi.org/10.1242/dev.02284
  • Kim SS, Harford JB, Pirollo KF, Chang EH. Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: the promise of nanomedicine. Biochem Biophys Res Commun 2015; http://dx.doi.org/10.1016/j.bbrc.2015.06.137
  • Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, et al., Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368(18): p. 1685-94; PMID:23534542; http://dx.doi.org/10.1056/NEJMoa1209026
  • Reid G, Pel ME, Kirschner MB, Cheng YY, Mugridge N, Weiss J, Williams M, Wright C, Edelman JJ, Vallely MP, et al., Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma. Ann Oncol 2013; 24(12): p. 3128-35; PMID:24148817; http://dx.doi.org/10.1093/annonc/mdt412
  • MacDiarmid JA, Mugridge NB, Weiss JC, Phillips L, Burn AL, Paulin RP, Haasdyk JE, Dickson KA, Brahmbhatt VN, Pattison ST, et al., Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. Cancer Cell 2007; 11(5): p. 431-45; PMID:17482133; http://dx.doi.org/10.1016/j.ccr.2007.03.012
  • MacDiarmid JA, Amaro-Mugridge NB, Madrid-Weiss J, Sedliarou I, Wetzel S, Kochar K, Brahmbhatt VN, Phillips L, Pattison ST, Petti C, et al., Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat Biotechnol 2009; 27(7): p. 643-51; PMID:19561595; http://dx.doi.org/10.1038/nbt.1547
  • Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, et al., Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 2013; 5(209): p. 209ra152; PMID:24174328; http://dx.doi.org/10.1126/scitranslmed.3006839
  • Tivnan A, Orr WS, Gubala V, Nooney R, Williams DE, McDonagh C, Prenter S, Harvey H, Domingo-Fernández R, Bray IM, et al., Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One 2012; 7(5): p. e38129; PMID:22662276; http://dx.doi.org/10.1371/journal.pone.0038129
  • Chiou GY, Cherng JY, Hsu HS, Wang ML, Tsai CM, Lu KH, Chien Y, Hung SC, Chen YW, Wong CI, et al., Cationic polyurethanes-short branch PEI-mediated delivery of Mir145 inhibited epithelial-mesenchymal transdifferentiation and cancer stem-like properties and in lung adenocarcinoma. J Control Release 2012; 159(2): p. 240-50; PMID:22285547; http://dx.doi.org/10.1016/j.jconrel.2012.01.014
  • Muthiah M, Islam MA, Lee HJ, Moon MJ, Cho CS, Park IK. MicroRNA delivery with osmotic polysorbitol-based transporter suppresses breast cancer cell proliferation. Int J Biol Macromol 2015; 72: p. 1237-43; PMID:25450545; http://dx.doi.org/10.1016/j.ijbiomac.2014.10.041
  • Qureshi AT, Doyle A, Chen C, Coulon D, Dasa V, Del Piero F, Levi B, Monroe WT, Gimble JM, Hayes DJ. Photoactivated miR-148b-nanoparticle conjugates improve closure of critical size mouse calvarial defects. Acta Biomater 2015; 12: p. 166-73; PMID:25462528; http://dx.doi.org/10.1016/j.actbio.2014.10.010
  • Chen Y, Gao DY, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev 2015; 81: p. 128-41; PMID:24859533; http://dx.doi.org/10.1016/j.addr.2014.05.009
  • Wang H, Jiang Y, Peng H, Chen Y, Zhu P, Huang Y. Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors. Adv Drug Deliv Rev 2015; 81: p. 142-60; PMID:25450259; http://dx.doi.org/10.1016/j.addr.2014.10.031
  • Auffinger B, Tobias AL, Han Y, Lee G, Guo D, Dey M, Lesniak MS, Ahmed AU, Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ 2014; 21(7): p. 1119-31; PMID:24608791; http://dx.doi.org/10.1038/cdd.2014.31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.