2,035
Views
12
CrossRef citations to date
0
Altmetric
Report

MMSET is dynamically regulated during cell-cycle progression and promotes normal DNA replication

, , , , , , & show all
Pages 95-105 | Received 21 Aug 2015, Accepted 12 Nov 2015, Published online: 15 Jan 2016

References

  • Blow JJ, Gillespie PJ. Replication licensing and cancer–a fatal entanglement? Nat Rev Cancer 2008; 8:799–806; PMID:18756287; http://dx.doi.org/10.1038/nrc2500
  • Mendez J, Stillman B. Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. BioEssays 2003; 25:1158–67; PMID:14635251; http://dx.doi.org/10.1002/bies.10370
  • Blow JJ, Dutta A. Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol 2005; 6:476–86; PMID:15928711; http://dx.doi.org/10.1038/nrm1663
  • Arias EE, Walter JC. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Gen Dev 2007; 21:497–518; PMID:17344412; http://dx.doi.org/10.1101/gad.1508907
  • Moyer SE, Lewis PW, Botchan MR. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A 2006; 103:10236–41; PMID:16798881; http://dx.doi.org/10.1073/pnas.0602400103
  • Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 2010; 37:247–58; PMID:20122406; http://dx.doi.org/10.1016/j.molcel.2009.12.030
  • Moldovan GL, Pfander B, Jentsch S. PCNA, the maestro of the replication fork. Cell 2007; 129:665–79; PMID:17512402; http://dx.doi.org/10.1016/j.cell.2007.05.003
  • Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 2000; 290:2309–12; PMID:11125146; http://dx.doi.org/10.1126/science.290.5500.2309
  • Tada S, Li A, Maiorano D, Mechali M, Blow JJ. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat Cell Biol 2001; 3:107–13; PMID:11175741; http://dx.doi.org/10.1038/35055000
  • Li X, Zhao Q, Liao R, Sun P, Wu X. The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem 2003; 278:30854–8; PMID:12840033; http://dx.doi.org/10.1074/jbc.C300251200
  • Havens CG, Walter JC. Mechanism of CRL4(Cdt2), a PCNA-dependent E3 ubiquitin ligase. Gen Dev 2011; 25:1568–82; PMID:21828267; http://dx.doi.org/10.1101/gad.2068611
  • Jin J, Arias EE, Chen J, Harper JW, Walter JC. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 2006; 23:709–21; PMID:16949367; http://dx.doi.org/10.1016/j.molcel.2006.08.010
  • Lee J, Zhou P. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell 2007; 26:775–80; PMID:17588513; http://dx.doi.org/10.1016/j.molcel.2007.06.001
  • O'Connell BC, Harper JW. Ubiquitin proteasome system (UPS): what can chromatin do for you?. Curr Opin Cell Biol 2007; 19:206–14; PMID:17314036; http://dx.doi.org/10.1016/j.ceb.2007.02.014
  • Arias EE, Walter JC. PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nat Cell Biol 2006; 8:84–90; PMID:16362051; http://dx.doi.org/10.1038/ncb1346
  • Zhong W, Feng H, Santiago FE, Kipreos ET. CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature 2003; 423:885–9; PMID:12815436; http://dx.doi.org/10.1038/nature01747
  • Abbas T, Sivaprasad U, Terai K, Amador V, Pagano M, Dutta A. PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Gen Dev 2008; 22:2496–506; PMID:18794347; http://dx.doi.org/10.1101/gad.1676108
  • Nishitani H, Lygerou Z, Nishimoto T. Proteolysis of DNA replication licensing factor Cdt1 in S-phase is performed independently of geminin through its N-terminal region. J Biol Chem 2004; 279:30807–16; PMID:15138268; http://dx.doi.org/10.1074/jbc.M312644200
  • Nishitani H, Shiomi Y, Iida H, Michishita M, Takami T, Tsurimoto T. CDK inhibitor p21 is degraded by a proliferating cell nuclear antigen-coupled Cul4-DDB1Cdt2 pathway during S phase and after UV irradiation. J Biol Chem 2008; 283:29045–52; PMID:18703516; http://dx.doi.org/10.1074/jbc.M806045200
  • Tardat M, Brustel J, Kirsh O, Lefevbre C, Callanan M, Sardet C, Julien E. The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nat Cell Biol 2010; 12:1086–93; PMID:20953199; http://dx.doi.org/10.1038/ncb2113
  • Sansam CL, Shepard JL, Lai K, Ianari A, Danielian PS, Amsterdam A, Hopkins N, Lees JA. DTLCDT2 is essential for both CDT1 regulation and the early G21487;M checkpoint. Gen Dev 2006; 20:3117–29; PMID:17085480; http://dx.doi.org/10.1101/gad.1482106
  • Kim Y, Starostina NG, Kipreos ET. The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing. Gen Dev 2008; 22:2507–19; PMID:18794348; http://dx.doi.org/10.1101/gad.1703708
  • Lovejoy CA, Lock K, Yenamandra A, Cortez D. DDB1 maintains genome integrity through regulation of Cdt1. Mol Cell Biol 2006; 26:7977–90; PMID:16940174; http://dx.doi.org/10.1128/MCB.00819-06
  • Chesi M, Nardini E, Lim RS, Smith KD, Kuehl WM, Bergsagel PL. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgHMMSET hybrid transcripts. Blood 1998; 92:3025–34; PMID:9787135
  • Keats JJ, Maxwell CA, Taylor BJ, Hendzel MJ, Chesi M, Bergsagel PL, Larratt LM, Mant MJ, Reiman T, Belch AR, et al. Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients. Blood 2005; 105:4060–9; PMID:15677557; http://dx.doi.org/10.1182/blood-2004-09-3704
  • Keats JJ, Reiman T, Belch AR, Pilarski LM. Ten years and counting: so what do we know about t(4;14)(p16;q32) multiple myeloma. Leukemia & lymphoma 2006; 47:2289–300; PMID:17107900; http://dx.doi.org/10.1080/10428190600822128
  • Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Larratt LM, Mant MJ, Belch AR, Pilarski LM. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 2003; 101:1520–9; PMID:12393535; http://dx.doi.org/10.1182/blood-2002-06-1675
  • Santra M, Zhan F, Tian E, Barlogie B, Shaughnessy J, Jr. A subset of multiple myeloma harboring the t(4;14)(p16;q32) translocation lacks FGFR3 expression but maintains an IGHMMSET fusion transcript. Blood 2003; 101:2374–6; PMID:12433679; http://dx.doi.org/10.1182/blood-2002-09-2801
  • Kassambara A, Klein B, Moreaux J. MMSET is overexpressed in cancers: link with tumor aggressiveness. Biochem Biophys Res commun 2009; 379:840–5; PMID:19121287; http://dx.doi.org/10.1016/j.bbrc.2008.12.093
  • Hudlebusch HR, Santoni-Rugiu E, Simon R, Ralfkiaer E, Rossing HH, Johansen JV, Jorgensen M, Sauter G, Helin K. The histone methyltransferase and putative oncoprotein MMSET is overexpressed in a large variety of human tumors. Clin Cancer Res; 17:2919–33; PMID:21385930; http://dx.doi.org/10.1158/1078-0432.CCR-10-1302
  • Hudlebusch HR, Skotte J, Santoni-Rugiu E, Zimling ZG, Lees MJ, Simon R, Sauter G, Rota R, De Ioris MA, Quarto M, et al. MMSET is highly expressed and associated with aggressiveness in neuroblastoma. Cancer Res 2011; 71:4226–35; PMID:21527557; http://dx.doi.org/10.1158/0008-5472.CAN-10-3810
  • Oyer JA, Huang X, Zheng Y, Shim J, Ezponda T, Carpenter Z, Allegretta M, Okot-Kotber CI, Patel JP, Melnick A, et al. Point mutation E1099K in MMSET(NSD2 enhances its methyltranferase activity and leads to altered global chromatin methylation in lymphoid malignancies. Leukemia 2014; 28:198–201; PMID:23823660; http://dx.doi.org/10.1038/leu.2013.204
  • Jaffe JD, Wang Y, Chan HM, Zhang J, Huether R, Kryukov GV, Bhang HE, Taylor JE, Hu M, Englund NP, et al. Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat Gen 2013; 45:1386–91; PMID:24076604; http://dx.doi.org/10.1038/ng.2777
  • Hirschhorn K, Cooper HL, Firschein IL. Deletion of short arms of chromosome 4-5 in a child with defects of midline fusion. Humangenetik 1965; 1:479–82; PMID:5895684
  • Wright TJ, Clemens M, Quarrell O, Altherr MR. Wolf-Hirschhorn and Pitt-Rogers-Danks syndromes caused by overlapping 4p deletions. Am J Med Gen 1998; 75:345–50; PMID:9482639; http://dx.doi.org/10.1002/(SICI)1096-8628(19980203)75:4%3c345::AID-AJMG2%3e3.0.CO;2-P
  • Wright TJ, Ricke DO, Denison K, Abmayr S, Cotter PD, Hirschhorn K, Keinanen M, McDonald-McGinn D, Somer M, Spinner N, et al. A transcript map of the newly defined 165 kb Wolf-Hirschhorn syndrome critical region. Hum Mol Gen 1997; 6:317–24; PMID:9063753; http://dx.doi.org/10.1093/hmg/6.2.317
  • Stec I, Wright TJ, van Ommen GJ, de Boer PA, van Haeringen A, Moorman AF, Altherr MR, den Dunnen JT. WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma. Hum Mol Gen 1998; 7:1071–82; PMID:9618163; http://dx.doi.org/10.1093/hmg/7.7.1071
  • Bergemann AD, Cole F, Hirschhorn K. The etiology of Wolf-Hirschhorn syndrome. TrendsGen 2005; 21:188–95; PMID:15734578; http://dx.doi.org/10.1016/j.tig.2005.01.008
  • Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ, Kaneda Y. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature 2009; 460:287–91; PMID:19483677; http://dx.doi.org/10.1038/nature08086
  • Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Molecular and cellular biology 1995; 15:2612–24; PMID:7739542; http://dx.doi.org/10.1128/MCB.15.5.2612
  • Li Y, Jaramillo-Lambert A, Hao J, Yang Y, Zhu W. The stability of histone acetyltransferase general control non-derepressible (Gcn) 5 is regulated by Cullin4-RING E3 ubiquitin ligase. J Biol Chem 2011; 286:41344–52; PMID:21987584; http://dx.doi.org/10.1074/jbc.M111.290767
  • Huh J, Piwnica-Worms H. CRL4(CDT2) targets CHK1 for PCNA-independent destruction. Mol Cell Biol 2013; 33:213–26; PMID:23109433; http://dx.doi.org/10.1128/MCB.00847-12
  • Centore RC, Havens CG, Manning AL, Li JM, Flynn RL, Tse A, Jin J, Dyson NJ, Walter JC, Zou L. CRL4(Cdt2)-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase. Mol Cell 2010; 40:22–33; PMID:20932472; http://dx.doi.org/10.1016/j.molcel.2010.09.015
  • Marango J, Shimoyama M, Nishio H, Meyer JA, Min DJ, Sirulnik A, Martinez-Martinez Y, Chesi M, Bergsagel PL, Zhou MM, et al. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood 2008; 111:3145–54; PMID:18156491; http://dx.doi.org/10.1182/blood-2007-06-092122
  • Brito JL, Walker B, Jenner M, Dickens NJ, Brown NJ, Ross FM, Avramidou A, Irving JA, Gonzalez D, Davies FE, et al. MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells. Haematologica 2009; 94:78–86; PMID:19059936; http://dx.doi.org/10.3324/haematol.13426
  • Martinez-Garcia E, Popovic R, Min DJ, Sweet SM, Thomas PM, Zamdborg L, Heffner A, Will C, Lamy L, Staudt LM, et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood 2011; 117:211–20; PMID:20974671; http://dx.doi.org/10.1182/blood-2010-07-298349
  • Kuo AJ, Cheung P, Chen K, Zee BM, Kioi M, Lauring J, Xi Y, Park BH, Shi X, Garcia BA, et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol cell 2011; 44:609–20; PMID:22099308; http://dx.doi.org/10.1016/j.molcel.2011.08.042
  • Toyokawa G, Cho HS, Masuda K, Yamane Y, Yoshimatsu M, Hayami S, Takawa M, Iwai Y, Daigo Y, Tsuchiya E, et al. Histone lysine methyltransferase Wolf-Hirschhorn syndrome candidate 1 is involved in human carcinogenesis through regulation of the Wnt pathway. Neoplasia 2011; 13:887–98; PMID:22028615; http://dx.doi.org/10.1593/neo.11048
  • Ezponda T, Popovic R, Shah MY, Martinez-Garcia E, Zheng Y, Min DJ, Will C, Neri A, Kelleher NL, Yu J, et al. The histone methyltransferase MMSETWHSC1 activates TWIST1 to promote an epithelial-mesenchymal transition and invasive properties of prostate cancer. Oncogene 2013; 32:2882–90; PMID:22797064; http://dx.doi.org/10.1038/onc.2012.297
  • Jorgensen S, Elvers I, Trelle MB, Menzel T, Eskildsen M, Jensen ON, Helleday T, Helin K, Sorensen CS. The histone methyltransferase SET8 is required for S-phase progression. J Cell Biol 2007; 179:1337–45; PMID:18166648; http://dx.doi.org/10.1083/jcb.200706150
  • Prasanth SG, Prasanth KV, Siddiqui K, Spector DL, Stillman B. Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance. EMBO J 2004; 23:2651–63; PMID:15215892; http://dx.doi.org/10.1038/sj.emboj.7600255
  • Prasanth SG, Prasanth KV, Stillman B. Orc6 involved in DNA replication, chromosome segregation, and cytokinesis. Science 2002; 297:1026–31; PMID:12169736; http://dx.doi.org/10.1126/science.1072802
  • Miotto B, Struhl K. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol Cell 2010; 37:57–66; PMID:20129055; http://dx.doi.org/10.1016/j.molcel.2009.12.012
  • Sugimoto N, Yugawa T, Iizuka M, Kiyono T, Fujita M. Chromatin remodeler sucrose nonfermenting 2 homolog (SNF2H) is recruited onto DNA replication origins through interaction with Cdc10 protein-dependent transcript 1 (Cdt1) and promotes pre-replication complex formation. J Biol Chem 2011; 286:39200–10; PMID:21937426; http://dx.doi.org/10.1074/jbc.M111.256123
  • Kuo AJ, Song J, Cheung P, Ishibe-Murakami S, Yamazoe S, Chen JK, Patel DJ, Gozani O. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature 2012; 484:115–9; PMID:22398447; http://dx.doi.org/10.1038/nature10956
  • Rice JC, Nishioka K, Sarma K, Steward R, Reinberg D, Allis CD. Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes. Gen Dev 2002; 16:2225–30; PMID:12208845; http://dx.doi.org/10.1101/gad.1014902
  • Tardat M, Murr R, Herceg Z, Sardet C, Julien E. PR-Set7-dependent lysine methylation ensures genome replication and stability through S phase. J Cell Biol 2007; 179:1413–26; PMID:18158331; http://dx.doi.org/10.1083/jcb.200706179
  • Xu H, Zhang P, Liu L, Lee MY. A novel PCNA-binding motif identified by the panning of a random peptide display library. Biochem 2001; 40:4512–20; PMID:11284708; http://dx.doi.org/10.1021/bi010103+
  • Kerzendorfer C, Colnaghi R, Abramowicz I, Carpenter G, O'Driscoll M. Meier-Gorlin syndrome and Wolf-Hirschhorn syndrome: two developmental disorders highlighting the importance of efficient DNA replication for normal development and neurogenesis. DNA Repair 2013; 12:637–44; PMID:23706772; http://dx.doi.org/10.1016/j.dnarep.2013.04.016
  • Kerzendorfer C, Hannes F, Colnaghi R, Abramowicz I, Carpenter G, Vermeesch JR, O'Driscoll M. Characterizing the functional consequences of haploinsufficiency of NELF-A (WHSC2) and SLBP identifies novel cellular phenotypes in Wolf-Hirschhorn syndrome. Human molecular genetics 2012; 21:2181–93; PMID:22328085; http://dx.doi.org/10.1093/hmg/dds033
  • Deng M, Li F, Ballif BA, Li S, Chen X, Guo L, Ye X. Identification and functional analysis of a novel cyclin e/cdk2 substrate ankrd17. J Biol Chem 2009; 284:7875–88; PMID:19150984; http://dx.doi.org/10.1074/jbc.M807827200
  • Braden WA, Lenihan JM, Lan Z, Luce KS, Zagorski W, Bosco E, Reed MF, Cook JG, Knudsen ES. Distinct action of the retinoblastoma pathway on the DNA replication machinery defines specific roles for cyclin-dependent kinase complexes in prereplication complex assembly and S-phase progression. Mol Cell Biol 2006; 26:7667–81; PMID:16908528; http://dx.doi.org/10.1128/MCB.00045-06
  • Ham H, Guerrier S, Kim J, Schoon RA, Anderson EL, Hamann MJ, Lou Z, Billadeau DD. Dedicator of cytokinesis 8 interacts with talin and Wiskott-Aldrich syndrome protein to regulate NK cell cytotoxicity. J Immunol 2013; 190:3661–9; http://dx.doi.10.4049/jimmunol.1202792
  • Yanagiya A, Suyama E, Adachi H, Svitkin YV, Aza-Blanc P, Imataka H, Mikami S, Martineau Y, Ronai ZA, Sonenberg N. Translational homeostasis via the mRNA cap-binding protein, eIF4E. Mol Cell 2012; 46:847–58; PMID:22578813; http://dx.doi.org/10.1016/j.molcel.2012.04.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.