1,220
Views
2
CrossRef citations to date
0
Altmetric
Report

ARTIK-52 induces replication-dependent DNA damage and p53 activation exclusively in cells of prostate and breast cancer origin

, , , , , , , , , , , & show all
Pages 455-470 | Received 18 Sep 2015, Accepted 27 Nov 2015, Published online: 29 Jan 2016

References

  • Tararova ND, Narizhneva N, Krivokrisenko V, Gudkov AV, Gurova KV. Prostate cancer cells tolerate a narrow range of androgen receptor expression and activity. Prostate 2007; 67:1801-15; PMID:17935158; http://dx.doi.org/10.1002/pros.20662
  • Narizhneva NV, Tararova ND, Ryabokon P, Shyshynova I, Prokvolit A, Komarov PG, Purmal AA, Gudkov AV, Gurova KV. Small molecule screening reveals a transcription-independent pro-survival function of androgen receptor in castration-resistant prostate cancer. Cell Cycle 2009; 8:4155-67; PMID:19946220; http://dx.doi.org/10.4161/cc.8.24.10316
  • Chen CY, Gherzi R, Ong SE, Chan EL, Raijmakers R, Pruijn GJ, Stoecklin G, Moroni C, Mann M, Karin M. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 2001; 107:451-64; PMID:11719186; http://dx.doi.org/10.1016/S0092-8674(01)00578-5
  • Sikand K, Slaibi JE, Singh R, Slane SD, Shukla GC. miR 488* inhibits androgen receptor expression in prostate carcinoma cells. Inter J Cancer 2011; 129:810-9; PMID:21710544; http://dx.doi.org/10.1002/ijc.25753
  • Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Radmark O. Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J 2002; 21:5864-74; PMID:12411504; http://dx.doi.org/10.1093/emboj/cdf578
  • Yeap BB, Wilce JA, Leedman PJ. The androgen receptor mRNA. Bio Essays 2004; 26:672-82; PMID:15170865; http://dx.doi.org/10.1002/bies.20051
  • Yeap BB, Voon DC, Vivian JP, McCulloch RK, Thomson AM, Giles KM, Czyzyk-Krzeska MF, Furneaux H, Wilce MC, Wilce JA, et al. Novel binding of HuR and poly(C)-binding protein to a conserved UC-rich motif within the 3'-untranslated region of the androgen receptor messenger RNA. J Biol Chem 2002; 277:27183-92; PMID:12011088; http://dx.doi.org/10.1074/jbc.M202883200
  • Epis MR, Giles KM, Barker A, Kendrick TS, Leedman PJ. miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem 2009; 284:24696-704; PMID:19584056; http://dx.doi.org/10.1074/jbc.M109.030098
  • Epis MR, Barker A, Giles KM, Beveridge DJ, Leedman PJ. The RNA-binding protein HuR opposes the repression of ERBB-2 gene expression by microRNA miR-331-3p in prostate cancer cells. J Biol Chem 2011; 286:41442-54; PMID:21971048; http://dx.doi.org/10.1074/jbc.M111.301481
  • Yeap BB, Krueger RG, Leedman PJ. Differential posttranscriptional regulation of androgen receptor gene expression by androgen in prostate and breast cancer cells. Endocrinology 1999; 140:3282-91; PMID:10385425
  • Safarpour D, Tavassoli FA. A Targetable Androgen Receptor-Positive Breast Cancer Subtype Hidden Among the Triple-Negative Cancers. Arch Pathol Laborat Med 2014; PMID:25310144
  • McNamara KM, Moore NL, Hickey TE, Sasano H, Tilley WD. Complexities of androgen receptor signalling in breast cancer. Endocr Relat Cancer 2014; 21:T161-81; PMID:24951107; http://dx.doi.org/10.1530/ERC-14-0243
  • Heiser LM, Sadanandam A, Kuo WL, Benz SC, Goldstein TC, Ng S, Gibb WJ, Wang NJ, Ziyad S, Tong F, et al. Subtype and pathway specific responses to anticancer compounds in breast cancer. Proc Natl Acad Sci U S A 2012; 109:2724-9; PMID:22003129; http://dx.doi.org/10.1073/pnas.1018854108
  • Bennett N, Hooper JD, Lee CS, Gobe GC. Androgen receptor and caveolin-1 in prostate cancer. IUBMB Life 2009; 61:961-70; PMID:19787702; http://dx.doi.org/10.1002/iub.244
  • Marquez B, Van Bambeke F. ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug-drug interactions. Curr Drug Targets 2011; 12:600-20; PMID:21039335; http://dx.doi.org/10.2174/138945011795378504
  • Sheikh KD, Khanna S, Byers SW, Fornace A, Jr., Cheema AK. Small molecule metabolite extraction strategy for improving LC/MS detection of cancer cell metabolome. J Biomol Tech 2011; 22:1-4; PMID:21455475
  • Lacroix M, Toillon RA, Leclercq G. p53 and breast cancer, an update. Endocr Relat Cancer 2006; 13:293-325; PMID:16728565; http://dx.doi.org/10.1677/erc.1.01172
  • Gasparian AV, Burkhart CA, Purmal AA, Brodsky L, Pal M, Saranadasa M, Bosykh DA, Commane M, Guryanova OA, Pal S, et al. Curaxins: anticancer compounds that simultaneously suppress NF-kappaB and activate p53 by targeting FACT. Sci Trans Med 2011; 3:95ra74; PMID:21832239; http://dx.doi.org/10.1126/scitranslmed.3002530
  • Liu T, Li Y, Gu H, Zhu G, Li J, Cao L, Li F. p21-Activated kinase 6 (PAK6) inhibits prostate cancer growth via phosphorylation of androgen receptor and tumorigenic E3 ligase murine double minute-2 (Mdm2). J Biol Chem 2013; 288:3359-69; PMID:23132866; http://dx.doi.org/10.1074/jbc.M112.384289
  • Gaughan L, Logan IR, Neal DE, Robson CN. Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation. Nucl Acids Res 2005; 33:13-26; PMID:15640443; http://dx.doi.org/10.1093/nar/gki141
  • Ossovskaya VS, Mazo IA, Chernov MV, Chernova OB, Strezoska Z, Kondratov R, Stark GR, Chumakov PM, Gudkov AV. Use of genetic suppressor elements to dissect distinct biological effects of separate p53 domains. Proc Natl Acad Sci U S A 1996; 93:10309-14; PMID:8816796; http://dx.doi.org/10.1073/pnas.93.19.10309
  • Alimirah F, Panchanathan R, Chen J, Zhang X, Ho SM, Choubey D. Expression of androgen receptor is negatively regulated by p53. Neoplasia 2007; 9:1152-9; PMID:18084622; http://dx.doi.org/10.1593/neo.07769
  • Iyama T, Wilson DM, 3rd. DNA repair mechanisms in dividing and non-dividing cells. DNA Repair 2013; 12:620-36; PMID:23684800; http://dx.doi.org/10.1016/j.dnarep.2013.04.015
  • Bhuyan BK, Fraser TJ, Gray LG, Kuentzel SL, Neil GL. Cell-kill kinetics of several S-phase-specific drugs. Cancer Res 1973; 33:888-94; PMID:4735241
  • Caldecott KW. XRCC1 and DNA strand break repair. DNA Repair 2003; 2:955-69; PMID:12967653; http://dx.doi.org/10.1016/S1568-7864(03)00118-6
  • Missura M, Buterin T, Hindges R, Hubscher U, Kasparkova J, Brabec V, Naegeli H. Double-check probing of DNA bending and unwinding by XPA-RPA: an architectural function in DNA repair. EMBO J 2001; 20:3554-64; PMID:11432842; http://dx.doi.org/10.1093/emboj/20.13.3554
  • Wold MS. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 1997; 66:61-92; PMID:9242902; http://dx.doi.org/10.1146/annurev.biochem.66.1.61
  • Feng W, Di Rienzi SC, Raghuraman MK, Brewer BJ. Replication stress-induced chromosome breakage is correlated with replication fork progression and is preceded by single-stranded DNA formation. G3 2011; 1:327-35; PMID:22384343; http://dx.doi.org/full_text
  • Rigatti MJ, Verma R, Belinsky GS, Rosenberg DW, Giardina C. Pharmacological inhibition of Mdm2 triggers growth arrest and promotes DNA breakage in mouse colon tumors and human colon cancer cells. Mol Carcinogen 2012; 51:363-78; PMID:21557332; http://dx.doi.org/10.1002/mc.20795
  • Zheng W, Thorne N, McKew JC. Phenotypic screens as a renewed approach for drug discovery. Drug Dis Today 2013; 18:1067-73; PMID:23850704; http://dx.doi.org/10.1016/j.drudis.2013.07.001
  • Lee JA, Shinn P, Jaken S, Oliver S, Willard FS, Heidler S, Peery RB, Oler J, Chu S, Southall N, et al. Novel Phenotypic Outcomes Identified for a Public Collection of Approved Drugs from a Publicly Accessible Panel of Assays. PloS One 2015; 10:e0130796; PMID:26177200; http://dx.doi.org/10.1371/journal.pone.0130796
  • Eder J, Sedrani R, Wiesmann C. The discovery of first-in-class drugs: origins and evolution. Nat Rev Drug Dis 2014; 13:577-87; PMID:25033734; http://dx.doi.org/10.1038/nrd4336
  • Moffat JG, Rudolph J, Bailey D. Phenotypic screening in cancer drug discovery - past, present and future. Nat Rev Drug Dis 2014; 13:588-602; PMID:25033736; http://dx.doi.org/10.1038/nrd4366
  • Polkinghorn WR, Parker JS, Lee MX, Kass EM, Spratt DE, Iaquinta PJ, Arora VK, Yen WF, Cai L, Zheng D, et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Dis 2013; 3:1245-53; PMID:24027196; http://dx.doi.org/10.1158/2159-8290.CD-13-0172
  • Wang L, Hsu CL, Ni J, Wang PH, Yeh S, Keng P, Chang C. Human checkpoint protein hRad9 functions as a negative coregulator to repress androgen receptor transactivation in prostate cancer cells. Mol Cell Biol 2004; 24:2202-13; PMID:14966297; http://dx.doi.org/10.1128/MCB.24.5.2202-2213.2004
  • Ta HQ, Gioeli D. The convergence of DNA damage checkpoint pathways and androgen receptor signaling in prostate cancer. Endocr Related Cancer 2014; 21:R395-407; PMID:25096064; http://dx.doi.org/10.1530/ERC-14-0217
  • Yeh S, Hu YC, Rahman M, Lin HK, Hsu CL, Ting HJ, Kang HY, Chang C. Increase of androgen-induced cell death and androgen receptor transactivation by BRCA1 in prostate cancer cells. Proc Natl Acad Sci U A 2000; 97:11256-61; PMID:11016951; http://dx.doi.org/10.1073/pnas.190353897
  • Park JJ, Irvine RA, Buchanan G, Koh SS, Park JM, Tilley WD, Stallcup MR, Press MF, Coetzee GA. Breast cancer susceptibility gene 1 (BRCAI) is a coactivator of the androgen receptor. Cancer Res 2000; 60:5946-9; PMID:11085509
  • Shin S, Verma IM. BRCA2 cooperates with histone acetyltransferases in androgen receptor-mediated transcription. Proc Natl Acad Sci U S A 2003; 100:7201-6; PMID:12756300; http://dx.doi.org/10.1073/pnas.1132020100
  • Wo JY, Zietman AL. Why does androgen deprivation enhance the results of radiation therapy? Urologic Oncol 2008; 26:522-9; PMID:18774467; http://dx.doi.org/10.1016/j.urolonc.2008.03.008
  • Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK, Kane M, Earabino C, Lipford J, Lindblom A, et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 1994; 368:258-61; PMID:8145827; http://dx.doi.org/10.1038/368258a0
  • Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1994; 77:1 p following 166; PMID:8156592; http://dx.doi.org/10.1016/0092-8674(94)90226-7
  • Beiner ME, Rosen B, Fyles A, Harley I, Pal T, Siminovitch K, Zhang S, Sun P, Narod SA. Endometrial cancer risk is associated with variants of the mismatch repair genes MLH1 and MSH2. Cancer Epidemiol Biomarkers Prev 2006; 15:1636-40; PMID:16985024; http://dx.doi.org/10.1158/1055-9965.EPI-06-0257
  • Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology 2010; 138:2044-58; PMID:20420945; http://dx.doi.org/10.1053/j.gastro.2010.01.054
  • Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266:66-71; PMID:7545954; http://dx.doi.org/10.1126/science.7545954
  • Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC. Linkage of early-onset familial breast cancer to chromosome 17q21. Science 1990; 250:1684-9; PMID:2270482; http://dx.doi.org/10.1126/science.2270482
  • Maia S, Cardoso M, Paulo P, Pinheiro M, Pinto P, Santos C, Pinto C, Peixoto A, Henrique R, Teixeira MR. The role of germline mutations in the BRCA1/2 and mismatch repair genes in men ascertained for early-onset and/or familial prostate cancer. Familial Cancer 2015; PMID:26289772
  • Goldgar DE, Neuhausen SL, Steele L, Fields P, Ward JH, Tran T, Ngyuen K, Stratton MR, Easton DF. A 45-year follow-up of kindred 107 and the search for BRCA2. J Natl Cancer Inst Monogr 1995:15-9; PMID:8573446
  • Gurova KV, Hill JE, Razorenova OV, Chumakov PM, Gudkov AV. p53 pathway in renal cell carcinoma is repressed by a dominant mechanism. Cancer Res 2004; 64:1951-8; PMID:15026329; http://dx.doi.org/10.1158/0008-5472.CAN-03-1541

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.