1,499
Views
28
CrossRef citations to date
0
Altmetric
Report

Periodic expression of Kv10.1 driven by pRb/E2F1 contributes to G2/M progression of cancer and non-transformed cells

, , &
Pages 799-811 | Received 18 Sep 2015, Accepted 30 Dec 2015, Published online: 30 Mar 2016

References

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144:646–74; PMID:21376230; http://dx.doi.org/10.1016/j.cell.2011.02.013.
  • Rieder CL. Mitosis in vertebrates: the G2/M and M/A transitions and their associated checkpoints. Chromosome Res 2011; 19:291–306; PMID:21194009; http://dx.doi.org/10.1007/s10577-010-9178-z.
  • Foster DA, Yellen P, Xu L, Saqcena M. Regulation of G1 cell cycle progression: distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s). Genes Cancer 2010; 1:1124–31; PMID:21779436; http://dx.doi.org/10.1177/1947601910392989.
  • Haase SB, Wittenberg C. Topology and control of the cell-cycle-regulated transcriptional circuitry. Genetics 2014; 196:65–90; PMID:24395825; http://dx.doi.org/10.1534/genetics.113.152595.
  • Urrego D, Tomczak AP, Zahed F, Stühmer W, Pardo LA. Potassium channels in cell cycle and cell proliferation. Philos Trans R Soc London Ser B 2014; 369:20130094; http://dx.doi.org/10.1098/rstb.2013.0094.
  • Pardo LA, Stühmer W. The roles of K+ channels in cancer. Nat Rev Cancer 2014; 14:39–48; PMID:24336491; http://dx.doi.org/10.1038/nrc3635.
  • Blackiston DJ, McLaughlin KA, Levin M. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 2009; 8:3519–28; http://dx.doi.org/10.4161/cc.8.21.9888.
  • Huang X, Dubuc AM, Hashizume R, Berg J, He Y, Wang J, Chiang C, Cooper MK, Northcott PA, Taylor MD, et al. Voltage-gated potassium channel EAG2 controls mitotic entry and tumor growth in medulloblastoma via regulating cell volume dynamics. Genes Dev 2012; 26:1780–96; http://dx.doi.org/10.1101/gad.193789.112.
  • Zhou Y, Wong C-O, Cho K-j, van der Hoeven D, Liang H, Thakur DP, Luo J, Babic M, Zinsmaier KE, Zhu MX, et al. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling. Science 2015; 349:873–6; PMID:26293964; http://dx.doi.org/10.1126/science.aaa5619.
  • Hemmerlein B, Weseloh RM, de Queiroz FM, Knötgen H, Sánchez A, Rubio ME, Martin S, Schliephacke T, Jenke M, Radzun H-J, et al. Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer 2006; 5:41; PMID:17022810; http://dx.doi.org/10.1186/1476-4598-5-41.
  • Weber C, Mello de Queiroz F, Downie BR, Suckow A, Stuhmer W, Pardo LA. Silencing the activity and proliferative properties of the human EagI potassium channel by RNA interference. J Biol Chem 2006; 281:13030–7; PMID:16537547; http://dx.doi.org/10.1074/jbc.M600883200.
  • Hammadi M, Chopin V, Matifat F, Dhennin-Duthille I, Chasseraud M, Sevestre H, Ouadid-Ahidouch H. Human ether a-gogo K+ channel 1 (hEag1) regulates MDA-MB-231 breast cancer cell migration through Orai1-dependent calcium entry. J Cell Physiol 2012; 227:3837–46; PMID:22495877; http://dx.doi.org/10.1002/jcp.24095.
  • Downie BR, Sánchez A, Knötgen H, Contreras-Jurado C, Gymnopoulos M, Weber C, Stühmer W, Pardo LA. Eag1 expression interferes with hypoxia homeostasis and induces angiogenesis in tumors. J Biol Chem 2008; 283:36234–40; PMID:18927085; http://dx.doi.org/10.1074/jbc.M801830200.
  • Borowiec AS, Hague F, Harir N, Guenin S, Guerineau F, Gouilleux F, Roudbaraki M, Lassoued K, Ouadid-Ahidouch H. IGF-1 activates hEAG K+ channels through an Akt-dependent signaling pathway in breast cancer cells: role in cell proliferation. J Cell Physiol 2007; 212:690–701; PMID:17520698; http://dx.doi.org/10.1002/jcp.21065.
  • Diaz L, Ceja-Ochoa I, Restrepo-Angulo I, Larrea F, Avila-Chavez E, Garcia-Becerra R, Borja-Cacho E, Barrera D, Ahumada E, Gariglio P, et al. Estrogens and human papilloma virus oncogenes regulate human ether-a-go-go-1 potassium channel expression. Cancer Res 2009; 69:3300–7; PMID:19351862; http://dx.doi.org/10.1158/0008-5472.CAN-08-2036.
  • Lin H, Li Z, Chen C, Luo X, Xiao J, Dong D, Lu Y, Yang B, Wang Z. Transcriptional and post-transcriptional mechanisms for oncogenic overexpression of ether à go-go K+ channel. PloS one 2011; 6:e20362; PMID:21655246; http://dx.doi.org/10.1371/journal.pone.0020362.
  • Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M, Nevins JR. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol 2001; 21:4684–99; PMID:11416145; http://dx.doi.org/10.1128/MCB.21.14.4684-4699.2001.
  • Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, Dynlacht BD. E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev 2002; 16:245–56; PMID:11799067; http://dx.doi.org/10.1101/gad.949802.
  • Zhu W, Giangrande PH, Nevins JR. E2Fs link the control of G1/S and G2/M transcription. EMBO J 2004; 23:4615–26; PMID:15510213; http://dx.doi.org/10.1038/sj.emboj.7600459.
  • Nishitani H, Taraviras S, Lygerou Z, Nishimoto T. The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of S-phase. J Biol Chem 2001; 276:44905–11; PMID:11555648; http://dx.doi.org/10.1074/jbc.M105406200.
  • Pardo LA, del Camino D, Sánchez A, Alves F, Brüggemann A, Beckh S, Stühmer W. Oncogenic potential of EAG K+ channels. EMBO J 1999; 18:5540–7; PMID:10523298; http://dx.doi.org/10.1093/emboj/18.20.5540.
  • Kosinski C, Li VS, Chan AS, Zhang J, Ho C, Tsui WY, Chan TL, Mifflin RC, Powell DW, Yuen ST, et al. Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci USA 2007; 104:15418–23; PMID:17881565; http://dx.doi.org/10.1073/pnas.0707210104.
  • Humphries A, Wright NA. Colonic crypt organization and tumorigenesis. Nat Rev Cancer 2008; 8:415–24; PMID:18480839; http://dx.doi.org/10.1038/nrc2392.
  • Shaker A, Rubin DC. Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche. Transl Res 2010; 156:180–7; PMID:20801415; http://dx.doi.org/10.1016/j.trsl.2010.06.003.
  • Polager S, Ginsberg D. E2F mediates sustained G2 arrest and down-regulation of Stathmin and AIM-1 expression in response to genotoxic stress. J Biol Chem 2003; 278:1443–9; PMID:12446714; http://dx.doi.org/10.1074/jbc.M210327200.
  • Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 2010; 10:550–60; PMID:20592731; http://dx.doi.org/10.1038/nrc2886.
  • Darnell GA, Schroder WA, Antalis TM, Lambley E, Major L, Gardner J, Birrell G, Cid-Arregui A, Suhrbier A. Human papillomavirus E7 requires the protease calpain to degrade the retinoblastoma protein. J Biol Chem 2007; 282:37492–500; PMID:17977825; http://dx.doi.org/10.1074/jbc.M706860200.
  • Takahashi Y, Rayman JB, Dynlacht BD. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev 2000; 14:804–16; PMID:10766737.
  • Ufartes R, Schneider T, Mortensen LS, de Juan Romero C, Hentrich K, Knoetgen H, Beilinson V, Moebius W, Tarabykin V, Alves F, et al. Behavioural and functional characterization of Kv10.1 (Eag1) knockout mice. Hum Mol Genet 2013; 22:2247–62; PMID:23424202; http://dx.doi.org/10.1093/hmg/ddt076.
  • Menendez ST, Villaronga MA, Rodrigo JP, Alvarez-Teijeiro S, Garcia-Carracedo D, Urdinguio RG, Fraga MF, Pardo LA, Viloria CG, Suarez C, et al. Frequent aberrant expression of the human ether à go-go (hEAG1) potassium channel in head and neck cancer: pathobiological mechanisms and clinical implications. J Mol Med (Berl) 2012; 90:1173–84; PMID:22466864; http://dx.doi.org/10.1007/s00109-012-0893-0.
  • Patt S, Preussat K, Beetz C, Kraft R, Schrey M, Kalff R, Schonherr K, Heinemann SH. Expression of ether a go-go potassium channels in human gliomas. Neurosci Lett 2004; 368:249–53; PMID:15364405; http://dx.doi.org/10.1016/j.neulet.2004.07.001.
  • de Queiroz FM, Suarez-Kurtz G, Stühmer W, Pardo LA. Ether a go-go potassium channel expression in soft tissue sarcoma patients. Mol Cancer 2006; 5:42; PMID:17022811; http://dx.doi.org/10.1186/1476-4598-5-42.
  • Ding XW, Luo HS, Jin X, Yan JJ, Ai YW. Aberrant expression of Eag1 potassium channels in gastric cancer patients and cell lines. Med Oncol 2007; 24:345–50; PMID:17873312; http://dx.doi.org/10.1007/s12032-007-0015-y.
  • Ding XW, Wang XG, Luo HS, Tan SY, Gao S, Luo B, Jiang H. Expression and prognostic roles of Eag1 in resected esophageal squamous cell carcinomas. Dig Dis Sci 2008; 53:2039–44; PMID:18080766; http://dx.doi.org/10.1007/s10620-007-0116-7.
  • Ding XW, Yan JJ, An P, Lu P, Luo HS. Aberrant expression of ether a go-go potassium channel in colorectal cancer patients and cell lines. World J Gastroenterol 2007; 13:1257–61; PMID:17451210; http://dx.doi.org/10.3748/wjg.v13.i8.1257.
  • Asher V, Khan R, Warren A, Shaw R, Schalkwyk GV, Bali A, Sowter HM. The Eag potassium channel as a new prognostic marker in ovarian cancer. Diagn Pathol 2010; 5:78; PMID:21138547; http://dx.doi.org/10.1186/1746-1596-5-78.
  • del Pliego MG, Aguirre-Benitez E, Paisano-Ceron K, Valdovinos-Ramirez I, Rangel-Morales C, Rodriguez-Mata V, Solano-Agama C, Martin-Tapia D, de la Vega MT, Saldoval-Balanzario M, et al. Expression of Eag1 K+ channel and ErbBs in human pituitary adenomas: cytoskeleton arrangement patterns in cultured cells. Int J Clin Exp Pathol 2013; 6:458–68; PMID:23413122.
  • Agarwal JR, Griesinger F, Stühmer W, Pardo LA. The potassium channel Ether à go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia. Mol Cancer 2010; 9:18; PMID:20105281; http://dx.doi.org/10.1186/1476-4598-9-18.
  • Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell 2002; 2:103–12; PMID:12204530; http://dx.doi.org/10.1016/S1535-6108(02)00102-2.
  • Xue Q, Sano T, Kashiwabara K, Oyama T, Nakajima T. Aberrant expression of pRb, p16, p14ARF, MDM2, p21 and p53 in squamous cell carcinomas of lung. Jpn J Cancer Res 2001; 92:285–92; PMID:11267938; http://dx.doi.org/10.1111/j.1349-7006.2001.tb01093.x.
  • Mettus RV, Rane SG. Characterization of the abnormal pancreatic development, reduced growth and infertility in Cdk4 mutant mice. Oncogene 2003; 22:8413–21; PMID:14627982; http://dx.doi.org/10.1038/sj.onc.1206888.
  • Carriere C, Gore AJ, Norris AM, Gunn JR, Young AL, Longnecker DS, Korc M. Deletion of Rb accelerates pancreatic carcinogenesis by oncogenic Kras and impairs senescence in premalignant lesions. Gastroenterol 2011; 141:1091–101; http://dx.doi.org/10.1053/j.gastro.2011.05.041.
  • Ertel A, Dean JL, Rui H, Liu C, Witkiewicz AK, Knudsen KE, Knudsen ES. RB-pathway disruption in breast cancer: differential association with disease subtypes, disease-specific prognosis and therapeutic response. Cell Cycle 2010; 9:4153–63; PMID:20948315; http://dx.doi.org/10.4161/cc.9.20.13454.
  • Witkiewicz AK, Cox DW, Rivadeneira D, Ertel AE, Fortina P, Schwartz GF, Knudsen ES. The retinoblastoma tumor suppressor pathway modulates the invasiveness of ErbB2-positive breast cancer. Oncogene 2013; 30:3980–91.
  • Cen L, Carlson BL, Schroeder MA, Ostrem JL, Kitange GJ, Mladek AC, Fink SR, Decker PA, Wu W, Kim JS, et al. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. Neuro-oncology 2012; 14:870–81; PMID:22711607; http://dx.doi.org/10.1093/neuonc/nos114.
  • Lee RJ, Albanese C, Fu M, D'Amico M, Lin B, Watanabe G, Haines GK, Siegel PM, Hung M-C, Yarden Y, et al. Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol Cell Biol 2000; 20:672–83; PMID:10611246; http://dx.doi.org/10.1128/MCB.20.2.672-683.2000.
  • Ouadid-Ahidouch H, Le Bourhis X, Roudbaraki M, Toillon RA, Delcourt P, Prevarskaya N. Changes in the K+ current-density of MCF-7 cells during progression through the cell cycle: Possible involvement of a h-ether.a-gogo K+ channel. Recept Channels 2001; 7:345–56; PMID:11697078.
  • Heng B, Glenn WK, Ye Y, Tran B, Delprado W, Lutze-Mann L, Whitaker NJ, Lawson JS. Human papilloma virus is associated with breast cancer. Br J Cancer 2009; 101:1345–50; PMID:19724278; http://dx.doi.org/10.1038/sj.bjc.6605282.
  • Wang L, Wang R, Herrup K. E2F1 works as a cell cycle suppressor in mature neurons. J Neurosci 2007; 27:12555–64; PMID:18003834; http://dx.doi.org/10.1523/JNEUROSCI.3681-07.2007.
  • Brüggemann A, Stühmer W, Pardo LA. Mitosis-promoting factor-mediated suppression of a cloned delayed rectifier potassium channel expressed in Xenopus oocytes. Proc Natl Acad Sci USA 1997; 94:537–42; PMID:9012819; http://dx.doi.org/10.1073/pnas.94.2.537.
  • Pardo LA, Brüggemann A, Camacho J, Stühmer W. Cell cycle-related changes in the conducting properties of r-eag K+ channels. J Cell Biol 1998; 143:767–75; PMID:9813096; http://dx.doi.org/10.1083/jcb.143.3.767.
  • Wonderlin WF, Woodfork KA, Strobl JS. Changes in membrane potential during the progression of MCF-7 human mammary tumor cells through the cell cycle. J Cell Physiol 1995; 165:177–85; PMID:7559799; http://dx.doi.org/10.1002/jcp.1041650121.
  • Hegle AP, Marble DD, Wilson GF. A voltage-driven switch for ion-independent signaling by ether-à-go-go K+ channels. Proc Natl Acad Sci USA 2006; 103:2886–91; PMID:16477030; http://dx.doi.org/10.1073/pnas.0505909103.
  • Malek NP, Sundberg H, McGrew S, Nakayama K, Kyriakides TR, Roberts JM. A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature 2001; 413:323–7; PMID:11565035; http://dx.doi.org/10.1038/35095083.
  • Sellers WR, Novitch BG, Miyake S, Heith A, Otterson GA, Kaye FJ, Lassar AB, Kaelin WG, Jr. Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth. Genes Dev 1998; 12:95–106; PMID:9420334; http://dx.doi.org/10.1101/gad.12.1.95.
  • Munger K, Phelps WC, Bubb V, Howley PM, Schlegel R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 1989; 63:4417–21; PMID:2476573.
  • Docquier A, Augereau P, Lapierre M, Harmand PO, Badia E, Annicotte JS, Fajas L, Cavailles V. The RIP140 gene is a transcriptional target of E2F1. PloS one 2012; 7:e35839; PMID:22629304; http://dx.doi.org/10.1371/journal.pone.0035839.
  • Shema E, Tirosh I, Aylon Y, Huang J, Ye C, Moskovits N, Raver-Shapira N, Minsky N, Pirngruber J, Tarcic G, et al. The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression. Genes Dev 2008; 22:2664–76; PMID:18832071; http://dx.doi.org/10.1101/gad.1703008.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−DDCT method. Methods 2001; 25:402–8; PMID:11846609; http://dx.doi.org/10.1006/meth.2001.1262.