846
Views
9
CrossRef citations to date
0
Altmetric
Report

Mitogenic signaling pathways in the liver of growth hormone (GH)-overexpressing mice during the growth period

, , , , , , & show all
Pages 748-759 | Received 18 Dec 2015, Accepted 21 Jan 2016, Published online: 30 Mar 2016

References

  • Sperling MA. Traditional and novel aspects of the metabolic actions of growth hormone. Growth Horm IGF Res 2015; PMID:26194064; http://dx.doi.org/10.1016/j.ghir.2015.06.005
  • Brooks AJ, Waters MJ. The growth hormone receptor: mechanism of activation and clinical implications. Nat Rev Endocrinol 2010; 6:515–25; PMID:20664532; http://dx.doi.org/10.1038/nrendo.2010.123
  • Xu J, Messina JL. Crosstalk between growth hormone and insulin signaling. Vitam Horm 2009; 80:125–53; PMID:19251037; http://dx.doi.org/10.1016/S0083-6729(08)00606-7
  • Lichanska AM, Waters MJ. New insights into growth hormone receptor function and clinical implications. Horm Res 2008; 69:138–45; PMID:18219216; http://dx.doi.org/10.1159/000112586
  • Carter-Su C, Schwartz J, Argetsinger LS. Growth hormone signaling pathways. Growth Horm IGF Res 2015; http://dx.doi.org/10.1016/j.ghir.2015.09.002
  • Chia DJ. Minireview: mechanisms of growth hormone-mediated gene regulation. Mol Endocrinol 2014; 28:1012–25; PMID:24825400; http://dx.doi.org/10.1210/me.2014-1099
  • Barclay JL, Kerr LM, Arthur L, Rowland JE, Nelson CN, Ishikawa M, d'Aniello EM, White M, Noakes PG, Waters MJ. In vivo targeting of the growth hormone receptor (GHR) Box1 sequence demonstrates that the GHR does not signal exclusively through JAK2. Mol Endocrinol 2010; 24:204–17; PMID:19884384; http://dx.doi.org/10.1210/me.2009-0233
  • Rotwein P. Mapping the growth hormone–Stat5b–IGF-I transcriptional circuit. Trends Endocrinol Metab 2012; 23:186–93; PMID:22361342; http://dx.doi.org/10.1016/j.tem.2012.01.001
  • Woelfle J, Rotwein P. In vivo regulation of growth hormone-stimulated gene transcription by STAT5b. Am J Physiol Endocrinol Metab 2004; 286:E393–401; PMID:14761873; http://dx.doi.org/10.1152/ajpendo.00389.2003
  • Gao B, Roux PP. Translational control by oncogenic signaling pathways. Biochim Biophys Acta 2015; 1849:753–65; PMID:25477072; http://dx.doi.org/10.1016/j.bbagrm.2014.11.006
  • Mathews LS, Hammer RE, Brinster RL, Palmiter RD. Expression of insulin-like growth factor I in transgenic mice with elevated levels of growth hormone is correlated with growth. Endocrinology 1988; 123:433–7; PMID:3383777; http://dx.doi.org/10.1210/endo-123-1-433
  • McGrane MM, Yun JS, Moorman AF, Lamers WH, Hendrick GK, Arafah BM, Park EA, Wagner TE, Hanson RW. Metabolic effects of developmental, tissue-, and cell-specific expression of a chimeric phosphoenolpyruvate carboxykinase (GTP)/bovine growth hormone gene in transgenic mice. J Biol Chem 1990; 265:22371–9; PMID:1702419
  • Martinez CS, Piazza VG, Diaz ME, Boparai RK, Arum O, Ramirez MC, Gonzalez L, Becu-Villalobos D, Bartke A, Turyn D, et al. Growth hormone (GH)/STAT5 signaling during the growth period in liver of mice overexpressing GH. J Mol Endocrinol 2015; 54(2):171–84; PMID:25691498
  • Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 1982; 300:611–5; PMID:6958982; http://dx.doi.org/10.1038/300611a0
  • Searle TW, Murray JD, Baker PJ. Effect of increased production of growth hormone on body composition in mice: transgenic versus control. J Endocrinol 1992; 132:285–91; PMID:1541927; http://dx.doi.org/10.1677/joe.0.1320285
  • Miquet JG, Freund T, Martinez CS, Gonzalez L, Diaz ME, Micucci GP, Zotta E, Boparai RK, Bartke A, Turyn D, et al. Hepatocellular alterations and dysregulation of oncogenic pathways in the liver of transgenic mice overexpressing growth hormone. Cell Cycle 2013; 12:1042–57; PMID:23428905; http://dx.doi.org/10.4161/cc.24026
  • Miquet JG, Gonzalez L, Matos MN, Hansen CE, Louis A, Bartke A, Turyn D, Sotelo AI. Transgenic mice overexpressing GH exhibit hepatic upregulation of GH-signaling mediators involved in cell proliferation. J Endocrinol 2008; 198:317–30; PMID:18480380; http://dx.doi.org/10.1677/JOE-08-0002
  • Miquet JG, Sotelo AI, Bartke A, Turyn D. Suppression of growth hormone (GH) Janus tyrosine kinase 2/signal transducer and activator of transcription 5 signaling pathway in transgenic mice overexpressing bovine GH. Endocrinology 2004; 145:2824–32; PMID:15016718; http://dx.doi.org/10.1210/en.2003-1498
  • Brem G, Wanke R, Wolf E, Buchmuller T, Muller M, Brenig B, Hermanns W. Multiple consequences of human growth hormone expression in transgenic mice. Mol Biol Med 1989; 6:531–47; PMID:2634813
  • Hoeflich A, Nedbal S, Blum WF, Erhard M, Lahm H, Brem G, Kolb HJ, Wanke R, Wolf E. Growth inhibition in giant growth hormone transgenic mice by overexpression of insulin-like growth factor-binding protein-2. Endocrinology 2001; 142:1889–98; PMID:11316754; http://dx.doi.org/10.1210/endo.142.5.8149
  • Wanke R, Hermanns W, Folger S, Wolf E, Brem G. Accelerated growth and visceral lesions in transgenic mice expressing foreign genes of the growth hormone family: an overview. Pediatr Nephrol 1991; 5:513–21; PMID:1911131; http://dx.doi.org/10.1007/BF01453693
  • Shea BT, Hammer RE, Brinster RL. Growth allometry of the organs in giant transgenic mice. Endocrinology 1987; 121:1924–30; PMID:3678132; http://dx.doi.org/10.1210/endo-121-6-1924
  • Orian JM, Lee CS, Weiss LM, Brandon MR. The expression of a metallothionein-ovine growth hormone fusion gene in transgenic mice does not impair fertility but results in pathological lesions in the liver. Endocrinology 1989; 124:455–63; PMID:2642419; http://dx.doi.org/10.1210/endo-124-1-455
  • Snibson KJ. Hepatocellular kinetics and the expression of growth hormone (GH) in the livers and liver tumours of GH-transgenic mice. Tissue Cell 2002; 34:88–97; PMID:12165243; http://dx.doi.org/10.1016/S0040-8166(02)00012-5
  • Snibson KJ, Bhathal PS, Hardy CL, Brandon MR, Adams TE. High, persistent hepatocellular proliferation and apoptosis precede hepatocarcinogenesis in growth hormone transgenic mice. Liver 1999; 19:242–52; PMID:10395045; http://dx.doi.org/10.1111/j.1478-3231.1999.tb00042.x
  • Orian JM, Tamakoshi K, Mackay IR, Brandon MR. New murine model for hepatocellular carcinoma: transgenic mice expressing metallothionein-ovine growth hormone fusion gene. J Natl Cancer Inst 1990; 82:393–8; PMID:2154583; http://dx.doi.org/10.1093/jnci/82.5.393
  • He G, Karin M. NF-kappaB and STAT3 - key players in liver inflammation and cancer. Cell Res 2011; 21:159–68; PMID:21187858; http://dx.doi.org/10.1038/cr.2010.183
  • Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 2008; 48:1312–27; PMID:18821591; http://dx.doi.org/10.1002/hep.22506
  • Martinez CS, Piazza VG, Ratner LD, Matos MN, Gonzalez L, Rulli SB, Miquet JG, Sotelo AI. Growth hormone STAT5-mediated signaling and its modulation in mice liver during the growth period. Growth Horm IGF Res 2013; 23:19–28; PMID:23245546; http://dx.doi.org/10.1016/j.ghir.2012.11.002
  • Popow A, Nowak D, Malicka-Blaszkiewicz M. Actin cytoskeleton and beta-actin expression in correlation with higher invasiveness of selected hepatoma Morris 5123 cells. J Physiol Pharmacol 2006; 57(Suppl 7):111–23; PMID:17228099
  • Miller LM, Menthena A, Chatterjee C, Verdier-Pinard P, Novikoff PM, Horwitz SB, Angeletti RH. Increased levels of a unique post-translationally modified betaIVb-tubulin isotype in liver cancer. Biochemistry 2008; 47:7572–82; PMID:18570381; http://dx.doi.org/10.1021/bi8005225
  • Lui JC, Baron J. Mechanisms limiting body growth in mammals. Endocr Rev 2011; 32:422–40; PMID:21441345; http://dx.doi.org/10.1210/er.2011-0001
  • Stanger BZ. The biology of organ size determination. Diabetes 2008; 10(Suppl 4):16–22; http://dx.doi.org/10.1111/j.1463-1326.2008.00938.x
  • Quaife CJ, Mathews LS, Pinkert CA, Hammer RE, Brinster RL, Palmiter RD. Histopathology associated with elevated levels of growth hormone and insulin-like growth factor I in transgenic mice. Endocrinology 1989; 124:40–8; PMID:2642417; http://dx.doi.org/10.1210/endo-124-1-40
  • Bartke A. Can growth hormone (GH) accelerate aging? Evidence from GH-transgenic mice. Neuroendocrinology 2003; 78:210–6; PMID:14583653; http://dx.doi.org/10.1159/000073704
  • Vergani G, Mayerhofer A, Bartke A. Acute effects of human growth hormone on liver cells in vitro: a comparison with livers of mice transgenic for human growth hormone. Tissue Cell 1991; 23:607–12; PMID:1776152; http://dx.doi.org/10.1016/0040-8166(91)90017-N
  • Takahashi-Yanaga F, Sasaguri T. GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy. Cell Signal 2008; 20:581–9; PMID:18023328; http://dx.doi.org/10.1016/j.cellsig.2007.10.018
  • Stamatakos M, Palla V, Karaiskos I, Xiromeritis K, Alexiou I, Pateras I, Kontzoglou K. Cell cyclins: triggering elements of cancer or not? World J Surg Oncol 2010; 8:111; PMID:21176227; http://dx.doi.org/10.1186/1477-7819-8-111
  • Feitelson MA, Sun B, Satiroglu Tufan NL, Liu J, Pan J, Lian Z. Genetic mechanisms of hepatocarcinogenesis. Oncogene 2002; 21:2593–604; PMID:11971194; http://dx.doi.org/10.1038/sj.onc.1205434
  • Bakiri L, Lallemand D, Bossy-Wetzel E, Yaniv M. Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of cyclin D1 expression. EMBO J 2000; 19:2056–68; PMID:10790372; http://dx.doi.org/10.1093/emboj/19.9.2056
  • Bretones G, Delgado MD, Leon J. Myc and cell cycle control. Biochim Biophy Acta 2015; 1849:506–16; PMID:24704206; http://dx.doi.org/10.1016/j.bbagrm.2014.03.013
  • Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV. MYC and metabolism on the path to cancer. Semin Cell Dev Biol 2015; 43:11–21; PMID:26277543
  • Zhu T, Ling L, Lobie PE. Identification of a JAK2-independent pathway regulating growth hormone (GH)-stimulated p44/42 mitogen-activated protein kinase activity. GH activation of Ral and phospholipase D is Src-dependent. J Biol Chem 2002; 277:45592–603; PMID:12218045; http://dx.doi.org/10.1074/jbc.M201385200
  • Rowlinson SW, Yoshizato H, Barclay JL, Brooks AJ, Behncken SN, Kerr LM, Millard K, Palethorpe K, Nielsen K, Clyde-Smith J, et al. An agonist-induced conformational change in the growth hormone receptor determines the choice of signalling pathway. Nat Cell Biol 2008; 10:740–7; PMID:18488018; http://dx.doi.org/10.1038/ncb1737
  • Roskoski R, Jr. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol Res 2015; 94:9–25; http://dx.doi.org/10.1016/j.phrs.2015.01.003
  • Bjorge JD, Jakymiw A, Fujita DJ. Selected glimpses into the activation and function of Src kinase. Oncogene 2000; 19:5620–35; PMID:11114743; http://dx.doi.org/10.1038/sj.onc.1203923
  • Boggon TJ, Eck MJ. Structure and regulation of Src family kinases. Oncogene 2004; 23:7918–27; PMID:15489910; http://dx.doi.org/10.1038/sj.onc.1208081
  • Roskoski R, Jr. Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 2005; 331:1–14; PMID:15845350; http://dx.doi.org/10.1016/j.bbrc.2005.03.012
  • Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, Sung B. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci 2009; 1171:59–76; PMID:19723038; http://dx.doi.org/10.1111/j.1749-6632.2009.04911.x
  • Berasain C, Castillo J, Perugorria MJ, Latasa MU, Prieto J, Avila MA. Inflammation and liver cancer: new molecular links. Ann N Y Acad Sci 2009; 1155:206–21; PMID:19250206; http://dx.doi.org/10.1111/j.1749-6632.2009.03704.x
  • Friedbichler K, Themanns M, Mueller KM, Schlederer M, Kornfeld JW, Terracciano LM, Kozlov AV, Haindl S, Kenner L, Kolbe T, et al. Growth-hormone-induced signal transducer and activator of transcription 5 signaling causes gigantism, inflammation, and premature death but protects mice from aggressive liver cancer. Hepatology 2012; 55:941–52; PMID:22031092; http://dx.doi.org/10.1002/hep.24765
  • Horiguchi N, Wang L, Mukhopadhyay P, Park O, Jeong WI, Lafdil F, Osei-Hyiaman D, Moh A, Fu XY, Pacher P, et al. Cell type-dependent pro- and anti-inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury. Gastroenterology 2008; 134:1148–58; PMID:18395093; http://dx.doi.org/10.1053/j.gastro.2008.01.016
  • Sakamori R, Takehara T, Ohnishi C, Tatsumi T, Ohkawa K, Takeda K, Akira S, Hayashi N. Signal transducer and activator of transcription 3 signaling within hepatocytes attenuates systemic inflammatory response and lethality in septic mice. Hepatology 2007; 46:1564–73; PMID:17705264; http://dx.doi.org/10.1002/hep.21837
  • Gonzalez L, Diaz ME, Miquet JG, Sotelo AI, Fernandez D, Dominici FP, Bartke A, Turyn D. GH modulates hepatic epidermal growth factor signaling in the mouse. J Endocrinol 2010; 204:299–309; PMID:20032199; http://dx.doi.org/10.1677/JOE-09-0372
  • Sturgill TW. MAP kinase: it's been longer than fifteen minutes. Biochem Biophys Res Commun 2008; 371:1–4; PMID:18406346; http://dx.doi.org/10.1016/j.bbrc.2008.04.002
  • Faes S, Dormond O. PI3K and AKT: Unfaithful partners in cancer. Int J Mol Sci 2015; 16:21138–52; PMID:26404259; http://dx.doi.org/10.3390/ijms160921138
  • Regad T. Targeting RTK Signaling Pathways in Cancer. Cancers 2015; 7:1758–84; PMID:26404379; http://dx.doi.org/10.3390/cancers7030860
  • Jacobs KM, Bhave SR, Ferraro DJ, Jaboin JJ, Hallahan DE, Thotala D. GSK-3beta: A Bifunctional Role in Cell Death Pathways. Int J Cell Biol 2012; 2012:930710; PMID:22675363; http://dx.doi.org/10.1155/2012/930710
  • Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 2000; 60:3504–13; PMID:10910062
  • Liko D, Hall MN. mTOR in health and in sickness. J Mol Med (Berl) 2015; 93:1061–73; PMID:26391637; http://dx.doi.org/10.1007/s00109-015-1326-7
  • Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 2005; 9:59–71; PMID:15784165; http://dx.doi.org/10.1111/j.1582-4934.2005.tb00337.x
  • Villanueva A, Chiang DY, Newell P, Peix J, Thung S, Alsinet C, Tovar V, Roayaie S, Minguez B, Sole M, et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 2008; 135:1972–83, 83 e1-11; PMID:18929564; http://dx.doi.org/10.1053/j.gastro.2008.08.008
  • Haga S, Ozaki M, Inoue H, Okamoto Y, Ogawa W, Takeda K, Akira S, Todo S. The survival pathways phosphatidylinositol-3 kinase (PI3-K)/phosphoinositide-dependent protein kinase 1 (PDK1)/Akt modulate liver regeneration through hepatocyte size rather than proliferation. Hepatology 2009; 49:204–14; PMID:19065678; http://dx.doi.org/10.1002/hep.22583
  • Ono H, Shimano H, Katagiri H, Yahagi N, Sakoda H, Onishi Y, Anai M, Ogihara T, Fujishiro M, Viana AY, et al. Hepatic Akt activation induces marked hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory element binding protein involvement. Diabetes 2003; 52:2905–13; PMID:14633850; http://dx.doi.org/10.2337/diabetes.52.12.2905

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.