1,181
Views
8
CrossRef citations to date
0
Altmetric
Report

Costs, benefits and redundant mechanisms of adaption to chronic low-dose stress in yeast

&
Pages 2732-2741 | Received 04 May 2016, Accepted 25 Jul 2016, Published online: 15 Sep 2016

References

  • Kirkwood TB. Understanding the odd science of aging. Cell 2005; 120:437-47; PMID:15734677; http://dx.doi.org/10.1016/j.cell.2005.01.027
  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 2000; 11:4241-57; PMID:11102521; http://dx.doi.org/10.1091/mbc.11.12.4241
  • Kultz D. Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 2005; 67:225-57; PMID:15709958; http://dx.doi.org/10.1146/annurev.physiol.67.040403.103635
  • Lopez-Maury L, Marguerat S, Bahler J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 2008; 9:583-93; PMID:18591982; http://dx.doi.org/10.1038/nrg2398
  • Schulte PM. What is environmental stress? Insights from fish living in a variable environment. J Exp Biol 2014; 217:23-34; PMID:24353201; http://dx.doi.org/10.1242/jeb.089722
  • Young JW, Locke JC, Elowitz MB. Rate of environmental change determines stress response specificity. Proc Natl Acad Sci U S A 2013; 110:4140-5; PMID:23407164; http://dx.doi.org/10.1073/pnas.1213060110
  • de Nadal E, Ammerer G, Posas F. Controlling gene expression in response to stress. Nature reviews Genetics 2011; 12:833-45; PMID:22048664
  • Tauffenberger A, Parker JA. Heritable transmission of stress resistance by high dietary glucose in Caenorhabditis elegans. PLoS genetics 2014; 10:e1004346; PMID:24785260; http://dx.doi.org/10.1371/journal.pgen.1004346
  • Gasch AP. The Environmental Stress Response: a common yeast response to environmental stresses. In: Hohmann S, Mager P, eds. Yeast Stress Responses: Topics in Current Genetics. Springer-Verlag Heidelberg, 2002:11-70.
  • Hahn A, Kilian J, Mohrholz A, Ladwig F, Peschke F, Dautel R, Harter K, Berendzen KW, Wanke D. Plant core environmental stress response genes are systemically coordinated during abiotic stresses. Int J Mol Sci 2013; 14:7617-41; PMID:23567274; http://dx.doi.org/10.3390/ijms14047617
  • Fulda S, Gorman AM, Hori O, Samali A. Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010; 2010:214074; PMID:20182529
  • Lewis JG, Learmonth RP, Watson K. Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. Microbiology 1995; 141 ( Pt 3):687-94; PMID:7711907; http://dx.doi.org/10.1099/13500872-141-3-687
  • Gasch AP. Comparative genomics of the environmental stress response in ascomycete fungi. Yeast 2007; 24:961-76; PMID:17605132; http://dx.doi.org/10.1002/yea.1512
  • Milisav I, Poljsak B, Suput D. Adaptive response, evidence of cross-resistance and its potential clinical use. Int J Mol Sci 2012; 13:10771-806; PMID:23109822; http://dx.doi.org/10.3390/ijms130910771
  • Long Y, Yan J, Song G, Li X, Li X, Li Q, Cui Z. Transcriptional events co-regulated by hypoxia and cold stresses in Zebrafish larvae. BMC genomics 2015; 16:385; PMID:25975375; http://dx.doi.org/10.1186/s12864-015-1560-y
  • Berry DB, Guan Q, Hose J, Haroon S, Gebbia M, Heisler LE, Nislow C, Giaever G, Gasch AP. Multiple means to the same end: the genetic basis of acquired stress resistance in yeast. PLoS genetics 2011; 7:e1002353; PMID:22102822; http://dx.doi.org/10.1371/journal.pgen.1002353
  • Guan Q, Haroon S, Bravo DG, Will JL, Gasch AP. Cellular memory of acquired stress resistance in Saccharomyces cerevisiae. Genetics 2012; 192:495-505; PMID:22851651; http://dx.doi.org/10.1534/genetics.112.143016
  • Chasman D, Ho YH, Berry DB, Nemec CM, MacGilvray ME, Hose J, Merrill AE, Lee MV, Will JL, Coon JJ, et al. Pathway connectivity and signaling coordination in the yeast stress-activated signaling network. Mol Syst Biol 2014; 10:759; PMID:25411400; http://dx.doi.org/10.15252/msb.20145120
  • Schulz H. Ueber Hefegifte. Pflügers Archiv - European Journal of Physiology 1888; 42:517-41; http://dx.doi.org/10.1007/BF01669373
  • Calabrese EJ, Baldwin LA. Hormesis: the dose-response revolution. Ann Rev Pharmacol Toxicol 2003; 43:175-97; PMID:12195028; http://dx.doi.org/10.1146/annurev.pharmtox.43.100901.140223
  • Calabrese EJ. Hormesis: a revolution in toxicology, risk assessment and medicine. EMBO Rep 2004; 5 Spec No:S37-40; PMID:15459733; http://dx.doi.org/10.1038/sj.embor.7400222
  • Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, Cedergreen N, Cherian MG, Chiueh CC, Clarkson TW, et al. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol Appl Pharmacol 2007; 222:122-8; PMID:17459441; http://dx.doi.org/10.1016/j.taap.2007.02.015
  • Mattson MP. Hormesis defined. Ageing Res Rev 2008; 7:1-7; PMID:18162444; http://dx.doi.org/10.1016/j.arr.2007.08.007
  • Costantini D, Metcalfe NB, Monaghan P. Ecological processes in a hormetic framework. Ecol Lett 2010; 13:1435-47; PMID:20849442; http://dx.doi.org/10.1111/j.1461-0248.2010.01531.x
  • Ermolaeva MA, Segref A, Dakhovnik A, Ou HL, Schneider JI, Utermohlen O, Hoppe T, Schumacher B. DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance. Nature 2013; 501:416-20; PMID:23975097; http://dx.doi.org/10.1038/nature12452
  • Cope CL, Gilley R, Balmanno K, Sale MJ, Howarth KD, Hampson M, Smith PD, Guichard SM, Cook SJ. Adaptation to mTOR kinase inhibitors by amplification of eIF4E to maintain cap-dependent translation. J Cell Sci 2014; 127:788-800; PMID:24363449; http://dx.doi.org/10.1242/jcs.137588
  • Calabrese EJ, Shamoun DY, Hanekamp JC. Cancer risk assessment: Optimizing human health through linear dose-response models. Food Chem Toxicol 2015; 81:137-40; PMID:25916915; http://dx.doi.org/10.1016/j.fct.2015.04.023
  • Stranahan AM, Mattson MP. Recruiting adaptive cellular stress responses for successful brain ageing. Nat Rev Neurosci 2012; 13:209-16; PMID:22251954
  • Perry MC, Dufour CR, Eichner LJ, Tsang DW, Deblois G, Muller WJ, Giguere V. ERBB2 deficiency alters an E2F-1-dependent adaptive stress response and leads to cardiac dysfunction. Mol Cell Biol 2014; 34:4232-43; PMID:25246633; http://dx.doi.org/10.1128/MCB.00895-14
  • Singh F, Charles AL, Schlagowski AI, Bouitbir J, Bonifacio A, Piquard F, Krahenbuhl S, Geny B, Zoll J. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis. Biochim Biophys Acta 2015; 1853:1574-85; PMID:25769432; http://dx.doi.org/10.1016/j.bbamcr.2015.03.006
  • Haendeler J, Tischler V, Hoffmann J, Zeiher AM, Dimmeler S. Low doses of reactive oxygen species protect endothelial cells from apoptosis by increasing thioredoxin-1 expression. FEBS Lett 2004; 577:427-33; PMID:15556622; http://dx.doi.org/10.1016/j.febslet.2004.10.041
  • Watson A, Mata J, Bahler J, Carr A, Humphrey T. Global gene expression responses of fission yeast to ionizing radiation. Mol Biol Cell 2004; 15:851-60; PMID:14668484; http://dx.doi.org/10.1091/mbc.E03-08-0569
  • Christmann M, Kaina B. Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res 2013; 41:8403-20; PMID:23892398; http://dx.doi.org/10.1093/nar/gkt635
  • Douglas H. Science, hormesis and regulation. Hum Exp Toxicol 2008; 27:603-7; PMID:19029255; http://dx.doi.org/10.1177/0960327108098493
  • Walker DW, McColl G, Jenkins NL, Harris J, Lithgow GJ. Evolution of lifespan in C. elegans. Nature 2000; 405:296-7; PMID:10830948; http://dx.doi.org/10.1038/35012693
  • Jenkins NL, McColl G, Lithgow GJ. Fitness cost of extended lifespan in Caenorhabditis elegans. Proc Biol Sci 2004; 271:2523-6; PMID:15590605; http://dx.doi.org/10.1098/rspb.2004.2897
  • Schumacher B. Transcription-blocking DNA damage in aging: a mechanism for hormesis. Bioessays 2009; 31:1347-56; PMID:19921662; http://dx.doi.org/10.1002/bies.200900107
  • Vaiserman AM. Hormesis, adaptive epigenetic reorganization, and implications for human health and longevity. Dose Response 2010; 8:16-21; PMID:20221294; http://dx.doi.org/10.2203/dose-response.09-014.Vaiserman
  • Wiegant FA, de Poot SA, Boers-Trilles VE, Schreij AM. Hormesis and Cellular Quality Control: A Possible Explanation for the Molecular Mechanisms that Underlie the Benefits of Mild Stress. Dose Response 2012; 11:413-30; PMID:23983668; http://dx.doi.org/10.2203/dose-response.12-030.Wiegant
  • Peake JM, Markworth JF, Nosaka K, Raastad T, Wadley GD, Coffey VG. Modulating exercise-induced hormesis: Does less equal more? J Appl Physiol (1985) 2015; 119:172-89; PMID:25977451; http://dx.doi.org/10.1152/japplphysiol.01055.2014
  • Kelly T, Owusu-Apenten RK. Effect of methotrexate and tea polyphenols on the viability and oxidative stress in MDA-MB-231 breast cancer cells. J App Life Sci Int 2015; 2:152-9; http://dx.doi.org/10.9734/JALSI/2015/14142
  • Botstein D, Fink GR. Yeast: an experimental organism for 21st Century biology. Genetics 2011; 189:695-704; PMID:22084421; http://dx.doi.org/10.1534/genetics.111.130765
  • Liti G. The fascinating and secret wild life of the budding yeast S. cerevisiae. Elife 2015; 4:1-9; PMID:25807086; http://dx.doi.org/10.7554/eLife.05835
  • Hartwell LH, Mortimer RK, Culotti J, Culotti M. Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants. Genetics 1973; 74:267-86; PMID:17248617
  • Weinert TA, Hartwell LH. Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. Genetics 1993; 134:63-80; PMID:8514150
  • Garvik B, Carson M, Hartwell L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol 1995; 15:6128-38; PMID:7565765; http://dx.doi.org/10.1128/MCB.15.11.6128
  • Lydall D. Taming the tiger by the tail: modulation of DNA damage responses by telomeres. EMBO J 2009; 28:2174-87; PMID:19629039; http://dx.doi.org/10.1038/emboj.2009.176
  • Schweitzer B, Philippsen P. CDC15, an essential cell cycle gene in Saccharomyces cerevisiae, encodes a protein kinase domain. Yeast 1991; 7:265-73; PMID:1882551; http://dx.doi.org/10.1002/yea.320070308
  • Hughes TR, Weilbaecher RG, Walterscheid M, Lundblad V. Identification of the single-strand telomeric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein. Proc Natl Acad Sci U S A 2000; 97:6457-62; PMID:10841551; http://dx.doi.org/10.1073/pnas.97.12.6457
  • Gardner RG, Nelson ZW, Gottschling DE. Degradation-mediated protein quality control in the nucleus. Cell 2005; 120:803-15; PMID:15797381; http://dx.doi.org/10.1016/j.cell.2005.01.016
  • Polotnianka RM, Li J, Lustig AJ. The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr Biol 1998; 8:831-4; PMID:9663392; http://dx.doi.org/10.1016/S0960-9822(98)70325-2
  • Foster SS, Zubko MK, Guillard S, Lydall D. MRX protects telomeric DNA at uncapped telomeres of budding yeast cdc13-1 mutants. DNA Repair (Amst) 2006; 5:840-51; PMID:16765654; http://dx.doi.org/10.1016/j.dnarep.2006.04.005
  • Lydall D, Weinert T. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science 1995; 270:1488-91; PMID:7491494; http://dx.doi.org/10.1126/science.270.5241.1488
  • Greenall A, Lei G, Swan DC, James K, Wang L, Peters H, Wipat A, Wilkinson DJ, Lydall D. A genome wide analysis of the response to uncapped telomeres in budding yeast reveals a novel role for the NAD+ biosynthetic gene BNA2 in chromosome end protection. Genome Biol 2008; 9:R146; PMID:18828915; http://dx.doi.org/10.1186/gb-2008-9-10-r146
  • Weinert TA, Kiser GL, Hartwell LH. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 1994; 8:652-65; PMID:7926756; http://dx.doi.org/10.1101/gad.8.6.652
  • Addinall SG, Holstein EM, Lawless C, Yu M, Chapman K, Banks AP, Ngo HP, Maringele L, Taschuk M, Young A, et al. Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects. PLoS genetics 2011; 7:e1001362; PMID:21490951; http://dx.doi.org/10.1371/journal.pgen.1001362
  • Holstein EM, Clark KR, Lydall D. Interplay between nonsense-mediated mRNA decay and DNA damage response pathways reveals that Stn1 and Ten1 are the key CST telomere-cap components. Cell Rep 2014; 7:1259-69; PMID:24835988; http://dx.doi.org/10.1016/j.celrep.2014.04.017
  • Weinert TA, Hartwell LH. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 1988; 241:317-22; PMID:3291120; http://dx.doi.org/10.1126/science.3291120
  • Zubko MK, Guillard S, Lydall D. Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Genetics 2004; 168:103-15; PMID:15454530; http://dx.doi.org/10.1534/genetics.104.027904
  • Ngo GH, Balakrishnan L, Dubarry M, Campbell JL, Lydall D. The 9-1-1 checkpoint clamp stimulates DNA resection by Dna2-Sgs1 and Exo1. Nucleic Acids Res 2014; 42:10516-28; PMID:25122752; http://dx.doi.org/10.1093/nar/gku746
  • Ngo HP, Lydall D. Survival and growth of yeast without telomere capping by Cdc13 in the absence of Sgs1, Exo1, and Rad9. PLoS genetics 2010; 6:e1001072; PMID:20808892; http://dx.doi.org/10.1371/journal.pgen.1001072
  • Elfving N, Chereji RV, Bharatula V, Bjorklund S, Morozov AV, Broach JR. A dynamic interplay of nucleosome and Msn2 binding regulates kinetics of gene activation and repression following stress. Nucleic Acids Res 2014; 42:5468-82; PMID:24598258; http://dx.doi.org/10.1093/nar/gku176
  • Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 1996; 15:2227-35; PMID:8641288
  • Sadeh A, Movshovich N, Volokh M, Gheber L, Aharoni A. Fine-tuning of the Msn2/4-mediated yeast stress responses as revealed by systematic deletion of Msn2/4 partners. Mol Biol Cell 2011; 22:3127-38; PMID:21757539; http://dx.doi.org/10.1091/mbc.E10-12-1007
  • Berry DB, Gasch AP. Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell 2008; 19:4580-7; PMID:18753408; http://dx.doi.org/10.1091/mbc.E07-07-0680
  • Jaspersen SL, Morgan DO. Cdc14 activates cdc15 to promote mitotic exit in budding yeast. Curr Biol 2000; 10:615-8; PMID:10837230; http://dx.doi.org/10.1016/S0960-9822(00)00491-7
  • Bardin AJ, Boselli MG, Amon A. Mitotic exit regulation through distinct domains within the protein kinase Cdc15. Mol Cell Biol 2003; 23:5018-30; PMID:12832486; http://dx.doi.org/10.1128/MCB.23.14.5018-5030.2003
  • Gilbert CS, Green CM, Lowndes NF. Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol Cell 2001; 8:129-36; PMID:11511366; http://dx.doi.org/10.1016/S1097-2765(01)00267-2
  • Usui T, Ogawa H, Petrini JH. A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol Cell 2001; 7:1255-66; PMID:11430828; http://dx.doi.org/10.1016/S1097-2765(01)00270-2
  • Jia X, Weinert T, Lydall D. Mec1 and Rad53 inhibit formation of single-stranded DNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Genetics 2004; 166:753-64; PMID:15020465; http://dx.doi.org/10.1534/genetics.166.2.753
  • Sweeney FD, Yang F, Chi A, Shabanowitz J, Hunt DF, Durocher D. Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation. Curr Biol 2005; 15:1364-75; PMID:16085488; http://dx.doi.org/10.1016/j.cub.2005.06.063
  • Lazzaro F, Sapountzi V, Granata M, Pellicioli A, Vaze M, Haber JE, Plevani P, Lydall D, Muzi-Falconi M. Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres. EMBO J 2008; 27:1502-12; PMID:18418382
  • Ngo GH, Lydall D. The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks. Nucleic Acids Res 2015; 43:5017-32; PMID:25925573; http://dx.doi.org/10.1093/nar/gkv409
  • Larrivee M, Wellinger RJ. Telomerase- and capping-independent yeast survivors with alternate telomere states. Nat Cell Biol 2006; 8:741-7; PMID:16767083; http://dx.doi.org/10.1038/ncb1429
  • Costantini D, Monaghan P, Metcalfe NB. Prior hormetic priming is costly under environmental mismatch. Biol Lett 2014; 10:20131010; PMID:24522630; http://dx.doi.org/10.1098/rsbl.2013.1010
  • Rupec RA, Baeuerle PA. The genomic response of tumor cells to hypoxia and reoxygenation. Differential activation of transcription factors AP-1 and NF-kappa B. Eur J Biochem 1995; 234:632-40; PMID:8536713; http://dx.doi.org/10.1111/j.1432-1033.1995.632_b.x
  • Laderoute KR, Webster KA. Hypoxia/reoxygenation stimulates Jun kinase activity through redox signaling in cardiac myocytes. Circ Res 1997; 80:336-44; PMID:9048653; http://dx.doi.org/10.1161/01.RES.80.3.336
  • Seko Y, Takahashi N, Tobe K, Kadowaki T, Yazaki Y. Hypoxia and hypoxia/reoxygenation activate p65PAK, p38 mitogen-activated protein kinase (MAPK), and stress-activated protein kinase (SAPK) in cultured rat cardiac myocytes. Biochem Biophys Res Commun 1997; 239:840-4; PMID:9367856; http://dx.doi.org/10.1006/bbrc.1997.7570
  • Abbott A. Researchers pin down risks of low-dose radiation. Nature 2015; 523:17-8; PMID:26135428; http://dx.doi.org/10.1038/523017a
  • Leuraud K, Richardson DB, Cardis E, Daniels RD, Gillies M, O'Hagan JA, Hamra GB, Haylock R, Laurier D, Moissonnier M, et al. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol 2015; 2:e276-e81; PMID:26436129; http://dx.doi.org/10.1016/S2352-3026(15)00094-0
  • Calabrese E. Hormesis: Once Marginalized, Evidence Now Supports Hormesis as the Most Fundamental Dose Response. In: Mattson MP, Calabrese, EJ, ed. Hormesis: A Revolution in Biology, Toxicology and Medicine. New York: Humana Press, 2010:15-56.