1,198
Views
10
CrossRef citations to date
0
Altmetric
Report

Cyclin-dependent kinase inhibitor flavopiridol promotes remyelination in a cuprizone induced demyelination model

, , , , , , & show all
Pages 2780-2791 | Received 11 May 2016, Accepted 31 Jul 2016, Published online: 31 Aug 2016

References

  • Uranova NA, Vikhreva OV, Rachmanova VI, Orlovskaya DD. Ultrastructural alterations of myelinated fibers and oligodendrocytes in the prefrontal cortex in schizophrenia: a postmortem morphometric study. Schizophr Res Treatment 2011; 2011:325789; PMID:22937264; http://dx.doi.org/10.1155/2011/325789
  • Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW, Ostrow LW, Rothstein JD, Bergles DE. Degeneration and impaired regeneration of gray matter oligo- dendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 2013; 16:571-9; PMID:23542689; http://dx.doi.org/10.1038/nn.3357
  • Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: Clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 2014; 47:485-505; PMID:25445182; http://dx.doi.org/10.1016/j.neubiorev.2014.10.004
  • Skripuletz T, Gudi V, Hackstette D, Stangel M. De- and remyelination in the CNS white and grey matter induced by cuprizone: the old, the new, and the unexpected. Histol Histopathol 2011; 26:1585-97
  • Gudi V, Gingele S, Skripuletz T, Stangel M. Glial response during cuprizone- induced de- and remyelination in the CNS: lessons learned. Front Cell Neurosci 2014; 8:73; PMID:24659953
  • Xu H, Yang HJ, Zhang Y, Clough R, Browning R, Li XM. Behavioral and neurobiological changes in C57BL/6 mice exposed to cuprizone. Behav Neurosci 2009; 123:418-29; PMID:19331464; http://dx.doi.org/10.1037/a0014477
  • Yang HJ, Wang H, Zhang Y, Xiao L, Clough RW, Browning R, Li XM, Xu H. Region-specific susceptibilities to cuprizone-induced lesions in the mouse forebrain: Implications for the pathophysiology of schizophrenia. Brain Res 2009; 1270:121-30; PMID:19306847; http://dx.doi.org/10.1016/j.brainres.2009.03.011
  • Faizi M, Salimi A, Seydi E, Naserzadeh P, Kouhnavard M, Rahimi A, Pourahmad J. Toxicity of cuprizone a Cu(2+) chelating agent on isolated mouse brain mitochondria: a justification for demyelination and subsequent behavioral dysfunction. Toxicol Mech Methods 2016; 26:276-83; PMID:27088566; http://dx.doi.org/10.3109/15376516.2016.1172284
  • Kashani IR, Rajabi Z, Akbari M, Hassanzadeh G, Mohseni A, Eramsadati MK, Rafiee K, Beyer C, Kipp M, Zendedel A. Protective effects of melatonin against mitochondrial injury in a mouse model of multiple sclerosis. Exp Brain Res 2014; 232:2835-46; PMID:24798398; http://dx.doi.org/10.1007/s00221-014-3946-5
  • Xuan Y, Yan G, Wu R, Huang Q, Li X, Xu H. The cuprizone-induced changes in (1)H-MRS metabolites and oxidative parameters in C57BL/6 mouse brain: Effects of quetiapine. Neurochem Int 2015; 90:185-92; PMID:26340869; http://dx.doi.org/10.1016/j.neuint.2015.08.015
  • Ghaiad HR, Nooh MM, El-Sawalhi MM, Shaheen AA. Resveratrol promotes remyelination in cuprizone model of multiple sclerosis: biochemial and histological study. Mol Neurobiol 2016; Apr 11. [Epub ahead of print]; PMID:27067589; http://dx.doi.org/10.1007/s12035-016-9891-5
  • Morita S, Tatsumi K, Makinodan M, Okuda H, Kishimoto T, Wanaka A. Geissoschizine methyl ether, an alkaloid from the Uncaria hook, improves remyelination after cuprizone-induced demyelination in medial prefrontal cortex of adult mice. Neurochem Res 2014; 39:59-67; PMID:24190599; http://dx.doi.org/10.1007/s11064-013-1190-1
  • Adilijiang A, Guan T, He J, Hartle K, Wang W, Li X. The protective effects of areca catechu extract on cognition and social interaction deficits in a cuprizone-induced demyelination model. Evid Based Complement Alternat Med 2015; 2015:426092; PMID:25815032; http://dx.doi.org/10.1155/2015/426092
  • Robinson AP, Rodgers JM, Goings GE, Miller SD. Characterization of olig-odendroglial populations in mouse demyelinatingdisease using flow-cytometryclues for MS pathogenesis. PLoS One 2014; 9:e107649; PMID:25247590; http://dx.doi.org/10.1371/journal.pone.0107649
  • Casaccia-Bonnefil P, Liu A. Relationship between cell cycle molecules and onset of oligodendrocyte differentiation. J Neurosci Res 2003; 72:1-11; PMID:12645074; http://dx.doi.org/10.1002/jnr.10565
  • Neumann B, Kazanis I. Oligodendrocyte progenitor cells: the ever mitotic cells of the CNS. Front Biosci (Schol Ed) 2016; 8:29-43; PMID:26709894; http://dx.doi.org/10.2741/s444
  • Byrnes KR, Stoica BA, Fricke S, Di Giovanni S, Faden AI. Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain 2007; 130:2977-92; PMID:17690131; http://dx.doi.org/10.1093/brain/awm179
  • Strazza M, Luddi A, Brogi A, Carbone M, Riccio M, Santi S, Melli M, Costantino-Ceccarini E. Activation of cell cycle regulatory proteins in the apoptosis of terminally differentiated oligodendrocytes. Neurochem Res 2004; 29:923-31; PMID:15139290; http://dx.doi.org/10.1023/B:NERE.0000021236.32785.37
  • Cernak I, Stoica B, Byrnes KR, Di Giovanni S, Faden AI. Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle 2005; 4:1286-93; PMID:16082214; http://dx.doi.org/10.4161/cc.4.9.1996
  • Casaccia-Bonnefil P, Tikoo R, Kiyokawa H, Friedrich V Jr., Chao MV, Koff A. Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kip1. Genes Dev 1997; 11:2335-46; PMID:9308962; http://dx.doi.org/10.1101/gad.11.18.2335
  • Di Giovanni S, Movsesyan V, Ahmed F, Cernak I, Schinelli S, Stoica B, et al. Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci USA 2005; 102:8333-8; PMID:15923260; http://dx.doi.org/10.1073/pnas.0500989102
  • Nguyen L, Malgrange B, Rocher V, Hans G, Moonen G, Rigo JM, Belachew S. Chemical inhibitors of cyclin-dependent kinases control proliferation, apoptosis and differentiation of oligodendroglial cells. Int J Dev Neurosci 2003; 21:321-6; PMID:12927580; http://dx.doi.org/10.1016/S0736-5748(03)00075-3
  • Jain SK, Bharate SB, Vishwakarma RA. Cyclin-dependent kinase inhibition by flavoalkaloids. Mini Rev Med Chem 2012; 12:632-49; PMID:22512551; http://dx.doi.org/10.2174/138955712800626683
  • Wu J, Stoica BA, Dinizo M, Pajoohesh-Ganji A, Piao C, Faden AI. Delayed cell cycle pathway modulation facilitates recovery after spinal cord injury. Cell Cycle 2012; 11:1782-95; PMID:22510563; http://dx.doi.org/10.4161/cc.20153
  • Gonzalez-Perez O, Alvarez-Buylla A. Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res Rev 2011; 67:147-56; PMID:21236296; http://dx.doi.org/10.1016/j.brainresrev.2011.01.001
  • Siegenthaler JA, Miller MW. Transforming growth factor beta 1 promotes cell cycle exit through the cyclin-dependent kinase inhibitor p21 in the developing cerebral cortex. J Neurosci 2005; 25:8627-36; PMID:16177030; http://dx.doi.org/10.1523/JNEUROSCI.1876-05.2005
  • Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 2002 Jul 19; 297(5580):365-9; http://dx.doi.org/10.1126/science.1074192
  • Arnett HA, Wang Y, Matsushima GK, Suzuki K, Ting JP. Functional genomic analysis of remyelination reveals importance of inflammation in oligodendrocyte regeneration. J Neurosci 2003; 23:9824-32; PMID:14586011
  • Belachew S, Aguirre AA, Wang H, Vautier F, Yuan X, Anderson S, Kirby M, Gallo V. Cyclin-dependent kinase-2 controls oligodendrocyte progenitorcell cycle progression and is downregulated in adultoligodendrocyte progenitors. J Neurosci 2002; 22:8553-62; PMID:12351729
  • Caillava C, Vandenbosch R, Jablonska B, Deboux C, Spigoni G, Gallo V, Malgrange B, Baron-Van Evercooren A. Cdk2 loss accelerates precursor differentiation and remyelination in the adult central nervous system. J Cell Biol 2011; 193:397-407; PMID:21502361; http://dx.doi.org/10.1083/jcb.201004146
  • Krishnan A, Nair SA, Pillai MR. Loss of cks1 homeostasis deregulates cell division cycle. J Cell Mol Med 2010; 14:154-64; PMID:19228269; http://dx.doi.org/10.1111/j.1582-4934.2009.00698.x
  • Wolthuis R, Clay-Farrace L, van Zon W, Yekezare M, Koop L, Ogink J, Medema R, Pines J. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Mol Cell 2008; 30:290-302; PMID:18471975; http://dx.doi.org/10.1016/j.molcel.2008.02.027
  • Tsai SY, Opavsky R, Sharma N, Wu L, Naidu S, Nolan E, Feria-Arias E, Timmers C, Opavska J, de Bruin A, et al. Mouse development with a single E2F activator. Nature 2008; 454:1137-41; PMID:18594513; http://dx.doi.org/10.1038/nature07066
  • Riera A, Speck C. Opening the gate to DNA replication. Cell Cycle 2015; 14:6-8; PMID:25483056; http://dx.doi.org/10.4161/15384101.2014.987624
  • Tognetti S, Riera A, Speck C. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma 2015; 124:13-26; PMID:25308420; http://dx.doi.org/10.1007/s00412-014-0489-2
  • Patil M, Pabla N, Dong Z. Checkpoint kinase 1 in DNA damage response and cell cycle regulation. Cell Mol Life Sci 2013; 70:4009-21; PMID:23508805; http://dx.doi.org/10.1007/s00018-013-1307-3
  • Weiss RS, Matsuoka S, Elledge SJ, Leder P. Hus1 acts upstream of chk1 in a mammalian DNA damage response pathway. Curr Biol 2002; 12:73-7; PMID:11790307; http://dx.doi.org/10.1016/S0960-9822(01)00626-1
  • McNeely S, Beckmann R, Bence Lin AK. CHEK again: revisiting the development of CHK1 inhibitors for cancer therapy. PharmacolTher 2014; 142:1-10
  • Uehara Y, Hirose J, Yamabe S, Okamoto N, Okada T, Oyadomari S, Mizuta H. Endoplasmic reticulum stress-induced apoptosis contributes to articular cartilage degeneration via C/EBP homologous protein. Osteoarthritis Cartilage 2014; 22:1007-17; PMID:24795271; http://dx.doi.org/10.1016/j.joca.2014.04.025
  • Wosik K, Antel J, Kuhlmann T, Brück W, Massie B, Nalbantoglu J. Oligodendrocyte injury in multiple sclerosis: a role for p53. J Neurochem 2003; 85:635-44; PMID:12694389; http://dx.doi.org/10.1046/j.1471-4159.2003.01674.x
  • Li J, Ghiani CA, Kim JY, Liu A, Sandoval J, Devellis J, Casaccia-Bonnefil P. Inhibition of p53 transcriptional activity: a potential target for future development of therapeutic strategies for primary demyelination. J Neurosci 2008; 28:6118-27; PMID:18550754; http://dx.doi.org/10.1523/JNEUROSCI.0184-08.2008
  • Zhao L, Neumann B, Murphy K, Silke J, Gonda TJ. Lack of reproducible growth inhibition by Schlafen1 and Schlafen2 in vitro. Blood Cells Mol Dis 2008; 41:188-93; PMID:18479948; http://dx.doi.org/10.1016/j.bcmd.2008.03.006
  • Chen C, Zhang L, Huang NJ, Huang B, Kornbluth S. Suppression of DNA-damage checkpoint signaling by Rsk-mediated phosphorylation of Mre11. Proc Natl Acad Sci U S A 2013; 110:20605-10; PMID:24297933; http://dx.doi.org/10.1073/pnas.1306328110
  • Rein K, Stracker TH. The MRE11 complex: an important source of stress relief. Exp Cell Res 2014; 329:162-9; PMID:25447316; http://dx.doi.org/10.1016/j.yexcr.2014.10.010
  • Bergles DE, Richardson WD. Oligodendrocyte Development and Plasticity. Cold Spring Harb Perspect Biol 2015; 8:a020453; PMID:26492571; http://dx.doi.org/10.1101/cshperspect.a020453
  • Keirstead HS, Blakemore WF. The role of oligodendrocytes and oligodendrocyte progenitors in CNS remyelination. Adv Exp Med Biol 1999; 468:183-97; PMID:10635029; http://dx.doi.org/10.1007/978-1-4615-4685-6_15
  • Lopez Juarez A, He D, Richard Lu Q. Oligodendrocyte progenitor programming and reprogramming: Toward myelin regeneration. Brain Res 2016; 1638:209-20; PMID:26546966; http://dx.doi.org/10.1016/j.brainres.2015.10.051
  • Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiaty 1987; 44:660-9; http://dx.doi.org/10.1001/archpsyc.1987.01800190080012
  • Geha S, Pallud J, Junier MP, Devaux B, Leonard N, Chassoux F, Chneiweiss H, Daumas-Duport C, Varlet P. NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol 2010; 20:399-411; PMID:19486010; http://dx.doi.org/10.1111/j.1750-3639.2009.00295.x
  • Dawson MR, Polito A, Levine JM, Reynolds R. NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 2003; 24:476-88; PMID:14572468; http://dx.doi.org/10.1016/S1044-7431(03)00210-0
  • Tanner DC, Cherry JD, Mayer-Pröschel M. Oligodendrocyte progenitors reversibly exit the cell cycle and give rise to astrocytes in response to interferon-γ. J Neurosci 2011; 31:6235-46; PMID:21508246; http://dx.doi.org/10.1523/JNEUROSCI.5905-10.2011
  • Keirstead HS, Levine JM, Blakemore WF. Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia 1998; 22:161-167; PMID:9537836; http://dx.doi.org/10.1002/(SICI)1098-1136(199802)22:2%3c161::AID-GLIA7%3e3.0.CO;2-A
  • Xu H, Yang HJ, Rose GM, Li XM. Recovery of behavioral changes and compromised white matter in C57BL/6 mice exposed to cuprizone: effects of antipsychotic drugs. Front Behav Neurosci 2011; 5:31; PMID:21747763; http://dx.doi.org/10.3389/fnbeh.2011.00031
  • Zhang Y, Xu H, Jiang W, Xiao L, Yan B, He J, Wang Y, Bi X, Li X, Kong J, Li XM. Quetiapine alleviates the cuprizone-induced white matter pathology in the brain of C57BL/6 mouse. Schizophr Res 2008; 106:182-91; PMID:18938062; http://dx.doi.org/10.1016/j.schres.2008.09.013
  • Soner BC, Aktug H, Acikgoz E, Duzagac F, Guven U, Ayla S, Cal C, Oktem G. Induced growth inhibition, cell cycle arrest and apoptosis in CD133+/CD44+ prostate cancer stem cells by flavopiridol. Int J Mol Med 2014; 34:1249-56; PMID:25216351
  • Bogler O, Wren D, Barnett SC, Land H, Noble M. Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A)progenitor cells. Proc Natl Acad Sci U S A 1990; 87:6368-72; PMID:2201028; http://dx.doi.org/10.1073/pnas.87.16.6368
  • Bansal R, Pfeiffer SE. FGF-2 converts mature oligodendrocytes to a novel phenotype. Neurosci Res 1997; 50:215-28; http://dx.doi.org/10.1002/(SICI)1097-4547(19971015)50:2%3c215::AID-JNR10%3e3.0.CO;2-7
  • Armstrong RC, Le TQ, Frost EE, Borke RC, Vana AC. Absence of fibroblast growth factor 2 promotes oligodendroglial repopulation of demyelinated white matter. J Neurosci 2002; 22:8574-85; PMID:12351731
  • Maña P, Liñares D, Fordham S, Staykova M, Willenborg D. Deleterious role of IFN gamma in a toxic model of central nervous system demyelination. Am J Pathol 2006; 168:1464-73; http://dx.doi.org/10.2353/ajpath.2006.050799
  • Pasquini LA, Calatayud CA, Bertone Uña AL, Millet V, Pasquini JM, Soto EF. The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res 2007; 32:279-92; PMID:17063394; http://dx.doi.org/10.1007/s11064-006-9165-0
  • Chew LJ, King WC, Kennedy A, Gallo V. Interferon-gamma inhibits cell cycle exit in differentiating oligodendrocyte progenitor cells. Glia 2005; 52:127-43; PMID:15920731; http://dx.doi.org/10.1002/glia.20232
  • Skripuletz T, Miller E, Moharregh-Khiabani D, Blank A, Pul R, Gudi V, Trebst C, Stangel M. Beneficial effects of minocycline on cuprizone induced cortical demyelination. Neurochem Res 2010; 35:1422-33; PMID:20544279; http://dx.doi.org/10.1007/s11064-010-0202-7
  • Voineskos AN, Felsky D, Kovacevic N, Tiwari AK, Zai C, Chakravarty MM, Lobaugh NJ, Shenton ME, Rajji TK, Miranda D, et al. Oligodendrocyte genes, white matter tract integrity, and cognition in schizophrenia. Cereb Cortex 2013; 23:2044-57; PMID:22772651; http://dx.doi.org/10.1093/cercor/bhs188
  • Chillemi G, Scalera C, Terranova C, Calamuneri A, Buccafusca M, Dattola V, Rizzo V, Bruschetta D, Girlanda P, Quartarone A. Cognitive processess and cognitive reserve in multiple sclerosis. Arch Ital Biol 2015; 153:19-24; PMID:26441363
  • Kroken RA, Løberg EM, Drønen T, Grüner R, Hugdahl K, Kompus K, Skrede S, Johnsen E. A critical review of pro-cognitive drug targets in psychosis: Convergence on myelination and inflammation. Front Psychiatry 2014; 5:11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.