1,228
Views
17
CrossRef citations to date
0
Altmetric
Review

The role of nuclear factor of activated T cells in pulmonary arterial hypertension

, , , , , & show all
Pages 508-514 | Received 17 Nov 2016, Accepted 05 Jan 2017, Published online: 28 Feb 2017

References

  • Shou J, Jing J, Xie J, You L, Jing Z, Yao J, Han W, Pan H. Nuclear factor of activated T cells in cancer development and treatment. Cancer Lett 2015; 361(2):174-184; PMID:25766658; http://dx.doi.org/10.1016/j.canlet.2015.03.005
  • Simonneau G, Galiè N, Rubin LJ, Langleben D, Seeger W, Domenighetti G, Gibbs S, Lebrec D, Speich R, Beghetti M, et al. Clinical classification of pulmonary hypertension. J Am Coll Cardiol 2004; 43(12 Suppl S):5S-12S; http://dx.doi.org/10.1016/j.jacc.2004.02.037
  • Stenmark KR, Tuder RM, El Kasmi KC. Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxicpulmonary hypertension. J Appl Physiol (1985) 2015; 119(10):1164-1172; PMID:25930027; http://dx.doi.org/10.1152/japplphysiol.00283.2015
  • El Chami H, Hassoun PM. Immune and inflammatory mechanisms in pulmonary arterial hypertension. Prog Cardiovasc Dis 2012; 55(2):218-228; http://dx.doi.org/10.1016/j.pcad.2012.07.006
  • Hassoun PM, Mouthon L, Barberà JA, Eddahibi S, Flores SC, Grimminger F, Jones PL, Maitland ML, Michelakis ED, Morrell NW, et al. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 2009; 54(1 Suppl):S10-S19; http://dx.doi.org/10.1016/j.jacc.2009.04.006
  • Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR. Identification of a putative regulator of early T cell activation genes. Science. 1988; 241(4862):202-205; PMID:3260404; http://dx.doi.org/10.1126/science.3260404
  • Nilsson LM, Nilsson-Ohman J, Zetterqvist AV, Gomez MF. Nuclear factor of activated T-cells transcription factors in the vasculature: the good guys or the bad guys? Curr Opin Lipidol 2008; 19(5):483-490
  • Lorgen M, Jorgensen EH, Jordan WC, Martin SA, Hazlerigg DG. NFAT5 genes are part of the osmotic regulatory system in Atlantic salmon (Salmo salar). Mar Genomics 2016; pii: S1874-7787(16)30058-7
  • Mancini M, Toker A. NFAT proteins: emerging roles in cancer progression. Nat Rev Cancer 2009; 9(11):810-820; PMID:19851316; http://dx.doi.org/10.1038/nrc2735
  • Pan MG, Xiong Y, Chen F. NFAT gene family in inflammation and cancer. Curr Mol Med 2013; 13(4):543-554; PMID:22950383; http://dx.doi.org/10.2174/1566524011313040007
  • Chen L, Glover JN, Hogan PG, Rao A, Harrison SC. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature. 1998; 392(6671):42-48; PMID:9510247; http://dx.doi.org/10.1038/32100
  • Medyouf H, Ghysdael J. The calcineurin/NFAT signaling pathway: a novel therapeutic target in leukemia and solid tumors. Cell Cycle 2008; 7(3):297-303.
  • Fric J, Zelante T, Wong AY, Mertes A, Yu HB, Ricciardi-Castagnoli P. NFAT control of innate immunity. Blood 2012; 120(7):1380-1389; PMID:22611159; http://dx.doi.org/10.1182/blood-2012-02-404475
  • Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, Hashimoto K, Bonnet SN, Michelakis ED. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci USA 2007;104(27):11418-23.
  • Guignabert C, Tu L, Izikki M, Dewachter L, Zadigue P, Humbert M, Adnot S, Fadel E, Eddahibi S. Dichloroacetate treatment partially regresses established pulmonary hypertension in mice with SM22alpha-targeted overexpression of the serotonin transporter. FASEB J 2009; 23(12):4135-4147; PMID:19679640; http://dx.doi.org/10.1096/fj.09-131664
  • Li M, Liu Y, Sun X, Li Z, Liu Y, Fang P, He P, Shi H, Xie M, Wang X, et al. Sildenafil inhibits calcineurin/NFATc2-mediated cyclin A expression in pulmonary artery smooth muscle cells. Life Sci 2011; 89(17–18):644-649.
  • Paulin R, Courboulin A, Meloche J, Mainguy V, Dumas de la Roque E, Saksouk N, Côté J, Provencher S, Sussman MA, Bonnet S. Signal transducers and activators of transcription-3/pim1 axis plays a critical role in the pathogenesis of human pulmonary arterial hypertension. Circulation 2011; 123(11):1205-1215.
  • Zimmer J, Takahashi T, Hofmann AD, Puri P. Imbalance of NFATc2 and KV1.5 Expression in Rat Pulmonary Vasculature of Nitrofen-Induced Congenital Diaphragmatic Hernia. Eur J Pediatr Surg. 2017;27(1):68–73. doi: 10.1055/s-0036-1587589.
  • Moudgil R, Michelakis ED, Archer SL. The role of k+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension. Microcirculation 2006; 13(8):615-632; PMID:17085423; http://dx.doi.org/10.1080/10739680600930222
  • Gross A. BCL-2 family proteins as regulators of mitochondria metabolism. Biochim Biophys Acta 2016; 1857(8):1243-1246; http://dx.doi.org/10.1016/j.bbabio.2016.01.017
  • Paulin R, Meloche J, Bonnet S. STAT3 signaling in pulmonary arterial hypertension. JAKSTAT 2012; 1(4):223-233; PMID:24058777
  • Dromparis P, Paulin R, Sutendra G, Qi AC, Bonnet S, Michelakis ED. Uncoupling protein 2 deficiency mimics the effects of hypoxia and endoplasmic reticulum stress on mitochondria and triggers pseudohypoxic pulmonary vascular remodeling and pulmonary hypertension. Circ Res 2013; 113(2):126-136.
  • Sutendra G, Dromparis P, Wright P, Bonnet S, Haromy A, Hao Z, McMurtry MS, Michalak M, Vance JE, Sessa WC, et al. The role of Nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension. Sci Transl Med 2011; 3:88ra55; PMID:21697531; http://dx.doi.org/10.1126/scitranslmed.3002194
  • Liu Y, Zhang J, Yi B, Chen M, Qi J, Yin Y, Lu X, Jasmin JF, Sun J. Nur77 suppresses pulmonary artery smooth muscle cell proliferation through inhibition of the STAT3/Pim-1/NFAT pathway. Am J Respir Cell Mol Biol 2014; 50(2):379-388; PMID:24047441
  • Assad TR, Hemnes AR. Metabolic Dysfunction in Pulmonary Arterial Hypertension. Curr Hypertens Rep 2015; 17(3):20; PMID:25754317; http://dx.doi.org/10.1007/s11906-014-0524-y
  • Sutendra G, Dromparis P, Bonnet S, Haromy A, McMurtry MS, Bleackley RC, Michelakis ED. Pyruvate dehydrogenase inhibition by the inflammatory cytokine TNFα contributes to the pathogenesis of pulmonary arterial hypertension. J Mol Med (Berl) 2011; 89(8):771-783; PMID:21809123; http://dx.doi.org/10.1007/s00109-011-0762-2
  • Sutendra G, Bonnet S, Rochefort G, Haromy A, Folmes KD, Lopaschuk GD, Dyck JR, Michelakis ED. Fatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension. Sci Transl Med 2010; 2(44):44ra58; PMID:20702857; http://dx.doi.org/10.1126/scitranslmed.3001327
  • Renard S, Paulin R, Breuils-Bonnet S, Simard S, Pibarot P, Bonnet S, Provencher S. Pim-1: A new biomarker in pulmonary arterial hypertension. Pulm Circ 2013; 3(1):74-81; PMID:23662177; http://dx.doi.org/10.4103/2045-8932.109917
  • Bierer R, Nitta CH, Friedman J, Codianni S, de Frutos S, Dominguez-Bautista JA, Howard TA, Resta TC, Bosc LV. NFATc3 is required for chronic hypoxia-induced pulmonary hypertension in adultand neonatal mice. Am J Physiol Lung Cell Mol Physiol 2011; 301(6):L872-880; PMID:21908592; http://dx.doi.org/10.1152/ajplung.00405.2010
  • Walther S, Awad S, Lonchyna VA, Blatter LA. NFAT transcription factor regulation by urocortin II in cardiac myocytes and heart failure. Am J Physiol Heart Circ Physiol 2014; 306(6):H856-866; PMID:24441548; http://dx.doi.org/10.1152/ajpheart.00353.2013
  • Wang C, Li JF, Zhao L, Liu J, Wan J, Wang YX, Wang J, Wang C. Inhibition of SOC/Ca2+/NFAT pathway is involved in the antiproliferative effect of sildenafil on pulmonaryartery smooth muscle cells. Respir Res 2009; 10:123; PMID:20003325; http://dx.doi.org/10.1186/1465-9921-10-123
  • Hou X, Chen J, Luo Y, Liu F, Xu G, Gao Y. Silencing of STIM1 attenuates hypoxia-induced PASMCs proliferation via inhibition of the SOC/Ca2+/NFAT pathway. Respir Res 2013; 14:2; PMID:23289723; http://dx.doi.org/10.1186/1465-9921-14-2
  • Guignabert C, Tu L, Le Hiress M, Ricard N, Sattler C, Seferian A, Huertas A, Humbert M, Montani D. Pathogenesis of pulmonary arterial hypertension: lessons from cancer. Eur Respir Rev 2013; 22(130):543-551; PMID:24293470; http://dx.doi.org/10.1183/09059180.00007513
  • Amberg GC, Rossow CF, Navedo MF, Santana LF. NFATc3 regulates Kv2.1 expression in arterial smooth muscle. J Biol Chem 2004; 279(45):47326-47334; PMID:15322114; http://dx.doi.org/10.1074/jbc.M408789200
  • de Frutos S, Diaz JM, Nitta CH, Sherpa ML, Bosc LV. Endothelin-1 contributes to increased NFATc3 activation by chronic hypoxia in pulmonary arteries. Am J Physiol Cell Physiol 2011; 301(2):C441-450; PMID:21525433; http://dx.doi.org/10.1152/ajpcell.00029.2011
  • de Frutos S, Nitta CH, Caldwell E, Friedman J, González Bosc LV. Regulation of soluble guanylyl cyclase- alpha 1 expression in chronic hypoxia-induced pulmonary hypertension: role of NFATc3 and HuR. Am J Physiol Lung Cell Mol Physiol 2009; 297(3):L475-486; PMID:19592461; http://dx.doi.org/10.1152/ajplung.00060.2009
  • de Frutos S, Spangler R, Alò D, Bosc LV. NFATc3 mediates chronic hypoxi-induced pulmonary arterial remodeling with alpha-actin up-regulation. J Biol Chem 2007; 282(20):15081-15089; PMID:17403661; http://dx.doi.org/10.1074/jbc.M702679200
  • Kang K, Peng X, Zhang X, Wang Y, Zhang L, Gao L, Weng T, Zhang H, Ramchandran R, Raj JU, et al. MicroRNA 124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genesand inhibits the proliferation of pulmonary artery smooth muscle cells. J Biol Chem 2013; 288(35):25414-25427; PMID:23853098; http://dx.doi.org/10.1074/jbc.M113.460287
  • Said SI. The vasoactive intestinal peptide gene is a key modulator of pulmonary vascular remodeling and inflammation. Ann N Y Acad Sci 2008; 1144:148-153.
  • Ramiro-Diaz JM, Nitta CH, Maston LD, Codianni S, Giermakowska W, Resta TC, Gonzalez Bosc LV. NFAT is required for spontaneous pulmonary hypertension in superoxide dismutase 1 knockout mice. Am J Physiol Lung Cell Mol Physiol 2013; 304(9):L613-625; PMID:23475768; http://dx.doi.org/10.1152/ajplung.00408.2012
  • Singh NK, Kundumani-Sridharan V, Kumar S, Verma SK, Kotla S, Mukai H, Heckle MR, Rao GN. Protein kinase N1 is a novel substrate of NFATc1-mediated cyclin D1-CDK6 activity and modulates vascular smooth muscle cell division and migration leading to inward blood vessel wall remodeling. J Biol Chem 2012; 287(43):36291-36304; PMID:22893700; http://dx.doi.org/10.1074/jbc.M112.361220
  • Liu Z, Zhang C, Dronadula N, Li Q, Rao GN. Blockade of nuclear factor of activated T cells activation signaling suppresses balloon injury-induced neointima formation in a rat carotid artery model. J Biol Chem 2005; 280(15):14700-14708; PMID:15681847; http://dx.doi.org/10.1074/jbc.M500322200
  • Boss V, Abbott KL, Wang XF, Pavlath GK, Murphy TJ. The cyclosporin A-sensitive nuclear factor of activated T cells (NFAT) proteins are expressed in vascular smooth muscle cells. Differential localization of NFAT isoforms and induction of NFAT-mediated transcription by phospholipase C-coupled cell surface receptors. J Biol Chem 1998; 273(31):19664-19671.
  • Larrieu D, Thiébaud P, Duplàa C, Sibon I, Thézé N, Lamazière JM. Activation of the Ca(2+)/calcineurin/NFAT2 pathway controls smooth muscle cell differentiation. Exp Cell Res 2005; 310(1):166-175; PMID:16129432; http://dx.doi.org/10.1016/j.yexcr.2005.07.021
  • Rosenkranz AC, Rauch BH, Doller A, Eberhardt W, Böhm A, Bretschneider E, Schrör K. Regulation of human vascular protease-activated receptor-3 through mRNA stabilization and the transcription factor nuclear factor of activated T cells (NFAT). Mol Pharmacol 2011; 80(2):337-344.
  • Yellaturu CR, Ghosh SK, Rao RK, Jennings LK, Hassid A, Rao GN. A potential role for nuclear factor of activated T-cells in receptor tyrosine kinase and G-protein-coupledreceptor agonist-induced cell proliferation. Biochem J 2002; 368(Pt 1):183-190; PMID:12188924; http://dx.doi.org/10.1042/bj20020347
  • Chan MC, Weisman AS, Kang H, Nguyen PH, Hickman T, Mecker SV, Hill NS, Lagna G, Hata A. The amiloride derivative phenamil attenuates pulmonary vascular remodeling by activating NFAT and the bone morphogenetic protein signaling pathway. Mol Cell Biol 2011; 31(3):517-530; PMID:21135135; http://dx.doi.org/10.1128/MCB.00884-10
  • Sadamura-Takenaka Y, Ito T, Noma S, Oyama Y, Yamada S, Kawahara K, Inoue H, Maruyama I. HMGB1 promotes the development of pulmonary arterial hypertension in rats. PLoS One 2014; 9(7):e102482; PMID:25032709; http://dx.doi.org/10.1371/journal.pone.0102482
  • Zhao Q, Wang L, Hu J, Liu H. Role of nuclear factor of activated T cells-2 in high mobility protein box-1 release in human monocytic THP-1 cells in vitro. Nan Fang Yi Ke Da Xue Xue Bao 2016; 36(1):8-12; PMID:26806731
  • Parpaite T, Cardouat G, Mauroux M, Gillibert-Duplantier J, Robillard P, Quignard JF, Marthan R, Savineau JP, Ducret T. Effect of hypoxia on TRPV1 and TRPV4 channels in rat pulmonary arterial smooth muscle cells. Pflugers Arch 2016; 468(1):111-130; PMID:25799977; http://dx.doi.org/10.1007/s00424-015-1704-6
  • Morelli S, Giordano M, De Marzio P, Priori R, Sgreccia A, Valesini G. Pulmonary arterial hypertension responsive to immunosuppressive therapy in systemic lupus erythematosus. Lupus. 1993; 2(6):367-369; PMID:8136819; http://dx.doi.org/10.1177/096120339300200606
  • Padeh S, Laxer RM, Silver MM, Silverman ED. Primary pulmonary hypertension in a patient with systemic-onset juvenile arthritis. Arthritis Rheum. 1991; 34(12):1575-1579; PMID:1747143; http://dx.doi.org/10.1002/art.1780341216
  • Kockx M, Jessup W, Kritharides L. Cyclosporin A and atherosclerosis–cellular pathways in atherogenesis. Pharmacol Ther 2010; 128(1):106-118. doi: 10.1016/j.pharmthera.2010.06.001
  • Yu H, van Berkel TJ, Biessen EA. Therapeutic potential of VIVIT, a selective peptide inhibitor of nuclear factor of activated T cells, incardiovascular disorders. Cardiovasc Drug Rev 2007; 25(2):175-187; PMID:17614939; http://dx.doi.org/10.1111/j.1527-3466.2007.00011.x
  • McKinsey TA, Olson EN. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 2005; 115(3):538-546; PMID:15765135; http://dx.doi.org/10.1172/JCI24144
  • Bîrsan T, Dambrin C, Marsh KC, Jacobsen W, Djuric SW, Mollison KW, Christians U, Carter GW, Morris RE. Preliminary in vivo pharmacokinetic and pharmacodynamic evaluation of a novel calcineurin-independent inhibitor of NFAT. Transpl Int 2004; 17(3):145-150; PMID:14735234; http://dx.doi.org/10.1111/j.1432-2277.2004.tb00419.x
  • Trevillyan JM, Chiou XG, Chen YW, Ballaron SJ, Sheets MP, Smith ML, Wiedeman PE, Warrior U, Wilkins J, Gubbins EJ, et al. Potent inhibition of NFAT activation and T cell cytokine production by novel low molecular weight pyrazole compounds. J Biol Chem 2001; 276(51):48118-48126; PMID:11592964
  • Nilsson-Berglund LM, Zetterqvist AV, Nilsson-Ohman J, Sigvardsson M, Gonzalez Bosc LV, Smith ML, Salehi A, Agardh E, Fredrikson GN, Agardh CD, et al. Nuclear factor of activated T cells regulates osteopontin expression in arterial smooth muscle in response to diabetes-induced hyperglycemia. Arterioscler Thromb Vasc Biol 2010; 30(2):218-224; http://dx.doi.org/10.1161/ATVBAHA.109.199299
  • Kishimoto Y, Kato T, Ito M, Azuma Y, Fukasawa Y, Ohno K, Kojima S. Hydrogen ameliorates pulmonary hypertension in rats by anti-inflammatory and antioxidant effects. J Thorac Cardiovasc Surg 2015; 150(3):645-654; http://dx.doi.org/10.1016/j.jtcvs.2015.05.052
  • Courboulin A, Barrier M, Perreault T, Bonnet P, Tremblay VL, Paulin R, Tremblay E, Lambert C, Jacob MH, Bonnet SN, et al. Plumbagin reverses proliferation and resistance to apoptosis in experimental PAH. Eur Respir J 2012; 40(3):618-629; PMID:22496325; http://dx.doi.org/10.1183/09031936.00084211
  • Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A, Pulido T, Frost A, Roux S, Leconte I, et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med 2002; 346(12):896-903; PMID:11907289; http://dx.doi.org/10.1056/NEJMoa012212
  • Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A, Tapson VF, Badesch DB, Roux S, Rainisio M, Bodin F, et al. Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet 2001; 358(9288):1119-1123; PMID:11597664; http://dx.doi.org/10.1016/S0140-6736(01)06250-X
  • Williamson DJ, Wallman LL, Jones R, Keogh AM, Scroope F, Penny R, Weber C, Macdonald PS. Hemodynamic effects of Bosentan, an endothelin receptor antagonist, in patients with pulmonary hypertension. Circulation 2000; 102(4):411-418; http://dx.doi.org/10.1161/01.CIR.102.4.411
  • Barst RJ, Langleben D, Badesch D, Frost A, Lawrence EC, Shapiro S, Naeije R, Galie N, STRIDE-2 Study Group. Treatment of pulmonary arterial hypertension with the selective endothelin-A receptor antagonist sitaxsentan. J Am Coll Cardiol 2006; 47(10):2049-2056; PMID:16697324; http://dx.doi.org/10.1016/j.jacc.2006.01.057
  • Kawamura T, Ono K, Morimoto T, Akao M, Iwai-Kanai E, Wada H, Sowa N, Kita T, Hasegawa K. Endothelin-1-dependent nuclear factor of activated T lymphocyte signaling associates with transcriptional coactivator p300 in the activation of the B cell leukemia-2 promoter in cardiac myocytes. Circ Res 2004; 94(11):1492-1499.
  • Liu J, Han Z, Han Z, He Z. Mesenchymal stem cell-conditioned media suppresses inflammation-associated overproliferation of pulmonary artery smooth muscle cells in a rat model of pulmonary hypertension. Exp Ther Med 2016; 11(2):467-475; PMID:26893632
  • Liu J, Han Z, Han Z, He Z. Mesenchymal stem cells suppress CaN/NFAT expression in the pulmonary arteries of rats with pulmonary hypertension. Exp Ther Med 2015; 10(5):1657-166; PMID:26640533

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.