3,431
Views
46
CrossRef citations to date
0
Altmetric
Extra View

SAMHD1 protects cancer cells from various nucleoside-based antimetabolites

ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 1029-1038 | Received 10 Feb 2017, Accepted 27 Mar 2017, Published online: 08 May 2017

References

  • Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011; 474:654-7; PMID:21613998; https://doi.org/10.1038/nature10117
  • Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, Florens L, Washburn MP, Skowronski J. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011; 474:658-61; PMID:21720370; https://doi.org/10.1038/nature10195
  • Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 2013; 14:877; https://doi.org/10.1038/ni0813-877a
  • Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF, Yap MW, et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 2011; 480:379-82; PMID:22056990; https://doi.org/10.1038/nature10623
  • Franzolin E, Pontarin G, Rampazzo C, Miazzi C, Ferraro P, Palumbo E, Reichard P, Bianchi V. The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells. Proc Natl Acad Sci U S A 2013; 110:14272-7; PMID:23858451; https://doi.org/10.1073/pnas.1312033110
  • Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, Fuller JC, Jackson RM, Lamb T, Briggs TA, et al. Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 2009; 41:829-32; PMID:19525956; https://doi.org/10.1038/ng.373
  • Clifford R, Louis T, Robbe P, Ackroyd S, Burns A, Timbs AT, Wright Colopy G, Dreau H, Sigaux F, Judde JG, et al. SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood 2014; 123:1021-31; PMID:24335234; https://doi.org/10.1182/blood-2013-04-490847
  • Wang JL, Lu FZ, Shen XY, Wu Y, Zhao LT. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation. Biochem Biophys Res Commun 2014; 455:229-33; PMID:25449277; https://doi.org/10.1016/j.bbrc.2014.10.153
  • Rentoft M, Lindell K, Tran P, Chabes AL, Buckland RJ, Watt DL, Marjavaara L, Nilsson AK, Melin B, Trygg J, et al. Heterozygous colon cancer-associated mutations of SAMHD1 have functional significance. Proc Natl Acad Sci U S A 2016; 113:4723-8; PMID:27071091; https://doi.org/10.1073/pnas.1519128113
  • Schneider C, Oellerich T, Baldauf HM, Schwarz SM, Thomas D, Flick R, Bohnenberger H, Kaderali L, Stegmann L, Cremer A, et al. SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia. Nat Med 2017; 23(2):250-255
  • Herold N, Rudd SG, Ljungblad L, Sanjiv K, Myrberg IH, Paulin CB, Heshmati Y, Hagenkort A, Kutzner J, Page BD, et al. Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies. Nat Med 2017; 23:256-63; PMID:28067901; https://doi.org/10.1038/nm.4265
  • Hollenbaugh JA, Shelton J, Tao S, Amiralaei S, Liu P, Lu X, Goetze RW, Zhou L, Nettles JH, Schinazi RF, et al. Substrates and Inhibitors of SAMHD1. PLoS One 2017; 12:e0169052; PMID:28046007; https://doi.org/10.1371/journal.pone.0169052
  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136:E359-86; PMID:25220842; https://doi.org/10.1002/ijc.29210
  • Taga T, Tomizawa D, Takahashi H, Adachi S. Acute myeloid leukemia in children: Current status and future directions. Pediatr Int 2016; 58:71-80; PMID:26645706; https://doi.org/10.1111/ped.12865
  • Ossenkoppele G, Lowenberg B. How I treat the older patient with acute myeloid leukemia. Blood 2015; 125:767-74; PMID:25515963; https://doi.org/10.1182/blood-2014-08-551499
  • Ellison RR, Holland JF, Weil M, Jacquillat C, Boiron M, Bernard J, Sawitsky A, Rosner F, Gussoff B, Silver RT, et al. Arabinosyl cytosine: a useful agent in the treatment of acute leukemia in adults. Blood 1968; 32:507-23; PMID:4879053
  • Mayer RJ, Davis RB, Schiffer CA, Berg DT, Powell BL, Schulman P, Omura GA, Moore JO, McIntyre OR, Frei E, 3rd. Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B. N Engl J Med 1994; 331:896-903; PMID:8078551; https://doi.org/10.1056/NEJM199410063311402
  • Zittoun R, Marie JP, Delanian S, Suberville AM, Thevenin D. Prognostic value of in vitro uptake and retention of cytosine arabinoside in acute myelogenous leukemia. Semin Oncol 1987; 14:269-75; PMID:3473680
  • Early AP, Preisler HD, Slocum H, Rustum YM. A pilot study of high-dose 1-beta-D-arabinofuranosylcytosine for acute leukemia and refractory lymphoma: Clinical response and pharmacology. Cancer Res 1982; 42:1587-94; PMID:6949642
  • Estey E, Plunkett W, Dixon D, Keating M, McCredie K, Freireich EJ. Variables predicting response to high dose cytosine arabinoside therapy in patients with refractory acute leukemia. Leukemia 1987; 1:580-3; PMID:3669771
  • Heinemann V, Jehn U. Rationales for a pharmacologically optimized treatment of acute nonlymphocytic leukemia with cytosine arabinoside. Leukemia 1990; 4:790-6; PMID:2232893
  • Hiddemann W, Schleyer E, Unterhalt M, Kern W, Buchner T. Optimizing therapy for acute myeloid leukemia based on differences in intracellular metabolism of cytosine arabinoside between leukemic blasts and normal mononuclear blood cells. Ther Drug Monit 1996; 18:341-9; PMID:8857548; https://doi.org/10.1097/00007691-199608000-00005
  • Kessel D, Hall TC, Rosenthal D. Uptake and phosphorylation of cytosine arabinoside by normal and leukemic human blood cells in vitro. Cancer Res 1969; 29:459-63; PMID:5250069
  • Rustum YM, Riva C, Preisler HD. Pharmacokinetic parameters of 1-beta-D-arabinofuranosylcytosine (ara-C) and their relationship to intracellular metabolism of ara-C, toxicity, and response of patients with acute nonlymphocytic leukemia treated with conventional and high-dose ara-C. Semin Oncol 1987; 14:141-8; PMID:3589689
  • Smyth JF, Robins AB, Leese CL. The metabolism of cytosine arabinoside as a predictive test for clinical response to the drug in acute myeloid leukaemia. Eur J Cancer 1976; 12:567-73; PMID:1066282; https://doi.org/10.1016/0014-2964(76)90164-X
  • Yamauchi T, Kawai Y, Goto N, Kishi S, Imamura S, Yoshida A, Urasaki Y, Fukushima T, Iwasaki H, Tsutani H, et al. Close correlation of 1-beta-D-arabinofuranosylcytosine 5′-triphosphate, an intracellular active metabolite, to the therapeutic efficacy of N(4)-behenoyl-1-beta-D-arabinofuranosylcytosine therapy for acute myelogenous leukemia. Jpn J Cancer Res 2001; 92:975-82; PMID:11572766; https://doi.org/10.1111/j.1349-7006.2001.tb01188.x
  • Cribier A, Descours B, Valadao AL, Laguette N, Benkirane M. Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell Rep 2013; 3:1036-43; PMID:23602554; https://doi.org/10.1016/j.celrep.2013.03.017
  • Welbourn S, Dutta SM, Semmes OJ, Strebel K. Restriction of virus infection but not catalytic dNTPase activity is regulated by phosphorylation of SAMHD1. J Virol 2013; 87:11516-24; PMID:23966382; https://doi.org/10.1128/JVI.01642-13
  • Arnold LH, Groom HC, Kunzelmann S, Schwefel D, Caswell SJ, Ordonez P, Mann MC, Rueschenbaum S, Goldstone DC, Pennell S, et al. Phospho-dependent regulation of SAMHD1 oligomerisation couples catalysis and restriction. PLoS Pathog 2015; 11:e1005194; PMID:26431200; https://doi.org/10.1371/journal.ppat.1005194
  • Kufe D, Spriggs D, Egan EM, Munroe D. Relationships among Ara-CTP pools, formation of (Ara-C)DNA, and cytotoxicity of human leukemic cells. Blood 1984; 64:54-8; PMID:6587917
  • Major PP, Egan EM, Herrick DJ, Kufe DW. Effect of ARA-C incorporation on deoxyribonucleic acid synthesis in cells. Biochem Pharmacol 1982; 31:2937-40; PMID:7138584; https://doi.org/10.1016/0006-2952(82)90266-0
  • Plunkett W, Begleiter A, Liliemark JO, Reed JC. Why do drugs work in CLL? Leuk Lymphoma 1996; 22 Suppl 2:1-11; PMID:9021705; https://doi.org/10.3109/10428199609102699
  • Robak P, Robak T. Older and new purine nucleoside analogs for patients with acute leukemias. Cancer Treat Rev 2013; 39:851-61; PMID:23566572; https://doi.org/10.1016/j.ctrv.2013.03.006
  • Kaltoft K, Bisballe S, Rasmussen HF, Thestrup-Pedersen K, Thomsen K, Sterry W. A continuous T-cell line from a patient with Sezary syndrome. Arch Dermatol Res 1987; 279:293-8; PMID:3498444; https://doi.org/10.1007/BF00431220
  • Fernandez HF, Sun Z, Yao X, Litzow MR, Luger SM, Paietta EM, Racevskis J, Dewald GW, Ketterling RP, Bennett JM, et al. Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med 2009; 361:1249-59; PMID:19776406; https://doi.org/10.1056/NEJMoa0904544
  • Matos PM, Marin M, Ahn B, Lam W, Santos NC, Melikyan GB. Anionic lipids are required for vesicular stomatitis virus G protein-mediated single particle fusion with supported lipid bilayers. J Biol Chem 2013; 288:12416-25; PMID:23493401; https://doi.org/10.1074/jbc.M113.462028
  • Goujon C, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix JL, Cimarelli A. With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIV(MAC). Gene Ther 2006; 13:991-4; PMID:16525481; https://doi.org/10.1038/sj.gt.3302753
  • Berger G, Goujon C, Darlix JL, Cimarelli A. SIVMAC Vpx improves the transduction of dendritic cells with nonintegrative HIV-1-derived vectors. Gene Ther 2009; 16:159-63; PMID:18668143; https://doi.org/10.1038/gt.2008.128
  • Berger G, Durand S, Goujon C, Nguyen XN, Cordeil S, Darlix JL, Cimarelli A. A simple, versatile and efficient method to genetically modify human monocyte-derived dendritic cells with HIV-1-derived lentiviral vectors. Nat Protoc 2011; 6:806-16; PMID:21637200; https://doi.org/10.1038/nprot.2011.327
  • Durand S, Nguyen XN, Turpin J, Cordeil S, Nazaret N, Croze S, Mahieux R, Lachuer J, Legras-Lachuer C, Cimarelli A. Tailored HIV-1 vectors for genetic modification of primary human dendritic cells and monocytes. J Virol 2013; 87:234-42; PMID:23077304; https://doi.org/10.1128/JVI.01459-12
  • Booth C, Gaspar HB, Thrasher AJ. Treating immunodeficiency through HSC gene therapy. Trends Mol Med 2016; 22:317-27; PMID:26993219; https://doi.org/10.1016/j.molmed.2016.02.002
  • Mansilla-Soto J, Riviere I, Boulad F, Sadelain M. Cell and gene therapy for the beta-thalassemias: Advances and prospects. Hum Gene Ther 2016; 27:295-304; PMID:27021486; https://doi.org/10.1089/hum.2016.037
  • Alton EW, Beekman JM, Boyd AC, Brand J, Carlon MS, Connolly MM, Chan M, Conlon S, Davidson HE, Davies JC, et al. Preparation for a first-in-man lentivirus trial in patients with cystic fibrosis. Thorax 2017; 72:137-47; PMID:27852956; https://doi.org/10.1136/thoraxjnl-2016-208406
  • Frecha C, Costa C, Negre D, Amirache F, Trono D, Rio P, Bueren J, Cosset FL, Verhoeyen E. A novel lentiviral vector targets gene transfer into human hematopoietic stem cells in marrow from patients with bone marrow failure syndrome and in vivo in humanized mice. Blood 2012; 119:1139-50; PMID:22117040; https://doi.org/10.1182/blood-2011-04-346619
  • Frecha C, Fusil F, Cosset FL, Verhoeyen E. In vivo gene delivery into hCD34+ cells in a humanized mouse model. Methods Mol Biol 2011; 737:367-90; PMID:21590405
  • Sahin U, Kariko K, Tureci O. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov 2014; 13:759-80; PMID:25233993; https://doi.org/10.1038/nrd4278
  • Kienle E, Senis E, Borner K, Niopek D, Wiedtke E, Grosse S, Grimm D. Engineering and evolution of synthetic adeno-associated virus (AAV) gene therapy vectors via DNA family shuffling. J Vis Exp 2012; 3819; PMID:22491297; https://doi.org/10.3791/3819
  • Chen JJ, Jin MX, Zhu SL, Li F, Xing Y. The Synthesis and characteristic study of transferrin-conjugated liposomes carrying brain-derived neurotrophic factor. Biomed Mater Eng 2014; 24:2089-99; PMID:25226906
  • Morrell NT, Leucht P, Zhao L, Kim JB, ten Berge D, Ponnusamy K, Carre AL, Dudek H, Zachlederova M, McElhaney M, et al. Liposomal packaging generates Wnt protein with in vivo biological activity. PLoS One 2008; 3:e2930; PMID:18698373; https://doi.org/10.1371/journal.pone.0002930
  • Gamis AS, Alonzo TA, Meshinchi S, Sung L, Gerbing RB, Raimondi SC, Hirsch BA, Kahwash SB, Heerema-McKenney A, Winter L, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: Results from the randomized phase III Children's Oncology Group trial AAML0531. J Clin Oncol 2014; 32:3021-32; PMID:25092781; https://doi.org/10.1200/JCO.2014.55.3628
  • Merati M, Buethe DJ, Cooper KD, Honda KS, Wang H, Gerstenblith MR. Aggressive CD8(+) epidermotropic cutaneous T-cell lymphoma associated with homozygous mutation in SAMHD1. JAAD Case Rep 2015; 1:227-9; PMID:27051737; https://doi.org/10.1016/j.jdcr.2015.05.003
  • Kodigepalli KM, Li M, Liu SL, Wu L. Exogenous expression of SAMHD1 inhibits proliferation and induces apoptosis in cutaneous T-cell lymphoma-derived HuT78 cells. Cell Cycle 2017; 16:179-88; PMID:27929746; https://doi.org/10.1080/15384101.2016.1261226
  • Bonifati S, Daly MB, St Gelais C, Kim SH, Hollenbaugh JA, Shepard C, Kennedy EM, Kim DH, Schinazi RF, Kim B, et al. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells. Virology 2016; 495:92-100; PMID:27183329; https://doi.org/10.1016/j.virol.2016.05.002
  • Frecha C, Szecsi J, Cosset FL, Verhoeyen E. Strategies for targeting lentiviral vectors. Curr Gene Ther 2008; 8:449-60; PMID:19075628; https://doi.org/10.2174/156652308786848003
  • Arnold LH, Kunzelmann S, Webb MR, Taylor IA. A continuous enzyme-coupled assay for triphosphohydrolase activity of HIV-1 restriction factor SAMHD1. Antimicrob Agents Chemother 2015; 59:186-92; PMID:25331707; https://doi.org/10.1128/AAC.03903-14
  • Seamon KJ, Stivers JT. A high-throughput enzyme-coupled assay for SAMHD1 dNTPase. J Biomol Screen 2015; 20:801-9; PMID:25755265; https://doi.org/10.1177/1087057115575150
  • Seamon KJ, Hansen EC, Kadina AP, Kashemirov BA, McKenna CE, Bumpus NN, Stivers JT. Small molecule inhibition of SAMHD1 dNTPase by tetramer destabilization. J Am Chem Soc 2014; 136:9822-5; PMID:24983818; https://doi.org/10.1021/ja5035717
  • Ladner RD. The role of dUTPase and uracil-DNA repair in cancer chemotherapy. Curr Protein Pept Sci 2001; 2:361-70; PMID:12374095; https://doi.org/10.2174/1389203013380991
  • Amie SM, Bambara RA, Kim B. GTP is the primary activator of the anti-HIV restriction factor SAMHD1. J Biol Chem 2013; 288:25001-6; PMID:23880768; https://doi.org/10.1074/jbc.C113.493619
  • Gad H, Koolmeister T, Jemth AS, Eshtad S, Jacques SA, Strom CE, Svensson LM, Schultz N, Lundback T, Einarsdottir BO, et al. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature 2014; 508:215-21; PMID:24695224; https://doi.org/10.1038/nature13181
  • Rudd SG, Valerie NC, Helleday T. Pathways controlling dNTP pools to maintain genome stability. DNA Repair (Amst) 2016; 44:193-204; PMID:27311542; https://doi.org/10.1016/j.dnarep.2016.05.032
  • Huber AD, Michailidis E, Schultz ML, Ong YT, Bloch N, Puray-Chavez MN, Leslie MD, Ji J, Lucas AD, Kirby KA, et al. SAMHD1 has differential impact on the efficacies of HIV nucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 2014; 58:4915-9; PMID:24867973; https://doi.org/10.1128/AAC.02745-14
  • Honma Y, Niitsu N. Vidarabine and 2-deoxycoformycin as antileukemic agents against monocytic leukemia. Leuk Lymphoma 2000; 39:57-66; PMID:10975384; https://doi.org/10.3109/10428190009053539
  • Sueda T, Sakai D, Kudo T, Sugiura T, Takahashi H, Haraguchi N, Nishimura J, Hata T, Hayashi T, Mizushima T, et al. Efficacy and safety of regorafenib or TAS-102 in patients with metastatic colorectal cancer refractory to standard therapies. Anticancer Res 2016; 36:4299-306; PMID:27466548
  • Scagliotti G, Nishio M, Satouchi M, Valmadre G, Niho S, Galetta D, Cortinovis D, Benedetti F, Yoshihara E, Makris L, et al. A phase 2 randomized study of TAS-102 versus topotecan or amrubicin in patients requiring second-line chemotherapy for small cell lung cancer refractory or sensitive to frontline platinum-based chemotherapy. Lung Cancer 2016; 100:20-3; PMID:27597276; https://doi.org/10.1016/j.lungcan.2016.06.023
  • Bando H, Doi T, Muro K, Yasui H, Nishina T, Yamaguchi K, Takahashi S, Nomura S, Kuno H, Shitara K, et al. A multicenter phase II study of TAS-102 monotherapy in patients with pre-treated advanced gastric cancer (EPOC1201). Eur J Cancer 2016; 62:46-53; PMID:27208903; https://doi.org/10.1016/j.ejca.2016.04.009
  • Griffith JF, Fitzwilliam JF, Casagrande S, Butler SR. Experimental herpes simplex virus encephalitis: Comparative effects of treatment with cytosine arabinoside and adenine arabinoside. J Infect Dis 1975; 132:506-10; PMID:171318; https://doi.org/10.1093/infdis/132.5.506
  • Miyamoto Y, Lenz HJ, Baba H. A novel antimetabolite: TAS-102 for metastatic colorectal cancer. Expert Rev Clin Pharmacol 2016; 9:355-65; PMID:26677869; https://doi.org/10.1586/17512433.2016.1133285
  • Elamin YY, Rafee S, Osman N, KJ OB, Gately K. Thymidine phosphorylase in cancer; Enemy or friend? Cancer Microenviron 2016; 9:33-43; PMID:26298314; https://doi.org/10.1007/s12307-015-0173-y
  • Lenz HJ, Stintzing S, Loupakis F. TAS-102, a novel antitumor agent: a review of the mechanism of action. Cancer Treat Rev 2015; 41:777-83; PMID:26428513; https://doi.org/10.1016/j.ctrv.2015.06.001
  • Momparler RL, Rossi M, Bouchard J, Vaccaro C, Momparler LF, Bartolucci S. Kinetic interaction of 5-AZA-2′-deoxycytidine-5′-monophosphate and its 5′-triphosphate with deoxycytidylate deaminase. Mol Pharmacol 1984; 25:436-40; PMID:6203026
  • Serdjebi C, Milano G, Ciccolini J. Role of cytidine deaminase in toxicity and efficacy of nucleosidic analogs. Expert Opin Drug Metab Toxicol 2015; 11:665-72; PMID:25495470; https://doi.org/10.1517/17425255.2015.985648
  • Heinemann V, Plunkett W. Modulation of deoxynucleotide metabolism by the deoxycytidylate deaminase inhibitor 3,4,5,6-tetrahydrodeoxyuridine. Biochem Pharmacol 1989; 38:4115-21; PMID:2688654; https://doi.org/10.1016/0006-2952(89)90693-X
  • Jansen RS, Rosing H, Schellens JH, Beijnen JH. Deoxyuridine analog nucleotides in deoxycytidine analog treatment: Secondary active metabolites? Fundam Clin Pharmacol 2011; 25:172-85; PMID:20199587; https://doi.org/10.1111/j.1472-8206.2010.00823.x
  • Riva C, Barra Y, Carcassonne Y, Cano JP, Rustum Y. Effect of tetrahydrouridine on metabolism and transport of 1-beta-D-arabinofuranosylcytosine in human cells. Chemotherapy 1992; 38:358-66; PMID:1286578; https://doi.org/10.1159/000239026
  • Ferraris D, Duvall B, Delahanty G, Mistry B, Alt J, Rojas C, Rowbottom C, Sanders K, Schuck E, Huang KC, et al. Design, synthesis, and pharmacological evaluation of fluorinated tetrahydrouridine derivatives as inhibitors of cytidine deaminase. J Med Chem 2014; 57:2582-8; PMID:24520856; https://doi.org/10.1021/jm401856k
  • McIntosh EM, Haynes RH. dUTP pyrophosphatase as a potential target for chemotherapeutic drug development. Acta Biochim Pol 1997; 44:159-71; PMID:9360704
  • Grasser FA, Romeike BF, Niedobitek G, Nicholls J, Kremmer E. dUTPase in human neoplastic cells as a potential target for therapeutic intervention. Curr Protein Pept Sci 2001; 2:349-60; PMID:12369931; https://doi.org/10.2174/1389203013381053
  • Miyakoshi H, Miyahara S, Yokogawa T, Endoh K, Muto T, Yano W, Wakasa T, Ueno H, Chong KT, Taguchi J, et al. 1,2,3-Triazole-containing uracil derivatives with excellent pharmacokinetics as a novel class of potent human deoxyuridine triphosphatase inhibitors. J Med Chem 2012; 55:6427-37; PMID:22715973; https://doi.org/10.1021/jm3004174
  • Saito K, Nagashima H, Noguchi K, Yoshisue K, Yokogawa T, Matsushima E, Tahara T, Takagi S. First-in-human, phase I dose-escalation study of single and multiple doses of a first-in-class enhancer of fluoropyrimidines, a dUTPase inhibitor (TAS-114) in healthy male volunteers. Cancer Chemother Pharmacol 2014; 73:577-83; PMID:24452393; https://doi.org/10.1007/s00280-014-2383-2
  • Valerie NC, Hagenkort A, Page BD, Masuyer G, Rehling D, Carter M, Bevc L, Herr P, Homan E, Sheppard NG, et al. NUDT15 Hydrolyzes 6-Thio-DeoxyGTP to Mediate the Anticancer Efficacy of 6-Thioguanine. Cancer Res 2016; 76:5501-11; PMID:27530327; https://doi.org/10.1158/0008-5472.CAN-16-0584
  • Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA, Zhao X, Lin TN, Hoshitsuki K, Nersting J, Kihira K, et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet 2016; 48:367-73; PMID:26878724; https://doi.org/10.1038/ng.3508
  • Schmiegelow K, Nersting J, Nielsen SN, Heyman M, Wesenberg F, Kristinsson J, Vettenranta K, Schroeder H, Weinshilboum R, Jensen KL, et al. Maintenance therapy of childhood acute lymphoblastic leukemia revisited-Should drug doses be adjusted by white blood cell, neutrophil, or lymphocyte counts? Pediatr Blood Cancer 2016; 63:2104-11; PMID:27447547; https://doi.org/10.1002/pbc.26139
  • Goncalves A, Karayel E, Rice GI, Bennett KL, Crow YJ, Superti-Furga G, Burckstummer T. SAMHD1 is a nucleic-acid binding protein that is mislocalized due to aicardi-goutieres syndrome-associated mutations. Hum Mutat 2012; 33:1116-22; PMID:22461318; https://doi.org/10.1002/humu.22087
  • Menendez-Arias L, Betancor G, Matamoros T. HIV-1 reverse transcriptase connection subdomain mutations involved in resistance to approved non-nucleoside inhibitors. Antiviral Res 2011; 92:139-49; PMID:21896288; https://doi.org/10.1016/j.antiviral.2011.08.020
  • Emura T, Murakami Y, Nakagawa F, Fukushima M, Kitazato K. A novel antimetabolite, TAS-102 retains its effect on FU-related resistant cancer cells. Int J Mol Med 2004; 13:545-9; PMID:15010854
  • Hollenbach PW, Nguyen AN, Brady H, Williams M, Ning Y, Richard N, Krushel L, Aukerman SL, Heise C, MacBeth KJ. A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One 2010; 5:e9001; PMID:20126405; https://doi.org/10.1371/journal.pone.0009001
  • Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483:603-7; PMID:22460905; https://doi.org/10.1038/nature11003
  • Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, Coletti ME, Jones V, Bodycombe NE, Soule CK, Gould J, et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov 2015; 5:1210-23; PMID:26482930; https://doi.org/10.1158/2159-8290.CD-15-0235
  • Rees MG, Seashore-Ludlow B, Cheah JH, Adams DJ, Price EV, Gill S, Javaid S, Coletti ME, Jones VL, Bodycombe NE, et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat Chem Biol 2016; 12:109-16; PMID:26656090; https://doi.org/10.1038/nchembio.1986