1,563
Views
10
CrossRef citations to date
0
Altmetric
Report

Novel clades of the HU/IHF superfamily point to unexpected roles in the eukaryotic centrosome, chromosome partitioning, and biologic conflicts

, , &
Pages 1093-1103 | Received 03 Mar 2017, Accepted 30 Mar 2017, Published online: 28 Apr 2017

References

  • Dillon SC, Dorman CJ. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 2010; 8:185-95; PMID:20140026; https://doi.org/10.1038/nrmicro2261
  • Reeve JN, Bailey KA, Li WT, Marc F, Sandman K, Soares DJ. Archaeal histones: structures, stability and DNA binding. Biochem Soc Trans 2004; 32:227-30; PMID:15046577; https://doi.org/10.1042/bst0320227
  • Sandman K, Reeve JN. Archaeal chromatin proteins: different structures but common function? Curr Opin Microbiol 2005; 8:656-61; PMID:16256418; https://doi.org/10.1016/j.mib.2005.10.007
  • Jones DO, Cowell IG, Singh PB. Mammalian chromodomain proteins: their role in genome organisation and expression. Bioessays 2000; 22:124-37; PMID:10655032; https://doi.org/10.1002/(SICI)1521-1878(200002)22:2%3c124::AID-BIES4%3e3.0.CO;2-E
  • Luijsterburg MS, White MF, van Driel R, Dame RT. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 2008; 43:393-418; PMID:19037758; https://doi.org/10.1080/10409230802528488
  • de Souza RF, Iyer LM, Aravind L. Diversity and evolution of chromatin proteins encoded by DNA viruses. Biochim Biophys Acta 2010; 1799:302-18; PMID:19878744; https://doi.org/10.1016/j.bbagrm.2009.10.006
  • Sandman K, Pereira SL, Reeve JN. Diversity of prokaryotic chromosomal proteins and the origin of the nucleosome. Cell Mol Life Sci 1998; 54:1350-64; PMID:9893710; https://doi.org/10.1007/s000180050259
  • Arents G, Moudrianakis EN. The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc Natl Acad Sci U S A 1995; 92:11170-4; PMID:7479959; https://doi.org/10.1073/pnas.92.24.11170
  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997; 389:251-60; PMID:9305837; https://doi.org/10.1038/38444
  • Sandman K, Reeve JN. Chromosome packaging by archaeal histones. Adv Appl Microbiol 2001; 50:75-99; PMID:11677690
  • White MF, Bell SD. Holding it together: chromatin in the Archaea. Trends Genet 2002; 18:621-6; PMID:12446147; https://doi.org/10.1016/S0168-9525(02)02808-1
  • Wardleworth BN, Russell RJ, Bell SD, Taylor GL, White MF. Structure of Alba: an archaeal chromatin protein modulated by acetylation. EMBO J 2002; 21:4654-62; PMID:12198167; https://doi.org/10.1093/emboj/cdf465
  • Paquet F, Culard F, Barbault F, Maurizot JC, Lancelot G. NMR solution structure of the archaebacterial chromosomal protein MC1 reveals a new protein fold. Biochemistry 2004; 43:14971-8; PMID:15554704; https://doi.org/10.1021/bi048382z
  • Guo L, Feng Y, Zhang Z, Yao H, Luo Y, Wang J, Huang L. Biochemical and structural characterization of Cren7, a novel chromatin protein conserved among Crenarchaea. Nucleic Acids Res 2008; 36:1129-37; PMID:18096617; https://doi.org/10.1093/nar/gkm1128
  • Grove A. Functional evolution of bacterial histone-like HU proteins. Curr Issues Mol Biol 2011; 13:1-12; PMID:20484776
  • Swinger KK, Rice PA. IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol 2004; 14:28-35; PMID:15102446; https://doi.org/10.1016/j.sbi.2003.12.003
  • Luijsterburg MS, Noom MC, Wuite GJ, Dame RT. The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J Struct Biol 2006; 156:262-72; PMID:16879983; https://doi.org/10.1016/j.jsb.2006.05.006
  • Dame RT. The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol 2005; 56:858-70; PMID:15853876; https://doi.org/10.1111/j.1365-2958.2005.04598.x
  • Kobayashi T, Takahara M, Miyagishima SY, Kuroiwa H, Sasaki N, Ohta N, Matsuzaki M, Kuroiwa T. Detection and localization of a chloroplast-encoded HU-like protein that organizes chloroplast nucleoids. Plant Cell 2002; 14:1579-89; PMID:12119376; https://doi.org/10.1105/tpc.002717
  • Sato N. Was the evolution of plastid genetic machinery discontinuous? Trends Plant Sci 2001; 6:151-5; PMID:11286919; https://doi.org/10.1016/S1360-1385(01)01888-X
  • Karcher D, Koster D, Schadach A, Klevesath A, Bock R. The Chlamydomonas chloroplast HLP protein is required for nucleoid organization and genome maintenance. Mol Plant 2009; 2:1223-32; PMID:19995727; https://doi.org/10.1093/mp/ssp083
  • Ram EV, Naik R, Ganguli M, Habib S. DNA organization by the apicoplast-targeted bacterial histone-like protein of Plasmodium falciparum. Nucleic Acids Res 2008; 36:5061-73; PMID:18663012; https://doi.org/10.1093/nar/gkn483
  • Reiff SB, Vaishnava S, Striepen B. The HU protein is important for apicoplast genome maintenance and inheritance in Toxoplasma gondii. Eukaryot Cell 2012; 11:905-15; PMID:22611021; https://doi.org/10.1128/EC.00029-12
  • Wong JT, New DC, Wong JC, Hung VK. Histone-like proteins of the dinoflagellate Crypthecodinium cohnii have homologies to bacterial DNA-binding proteins. Eukaryot Cell 2003; 2:646-50; PMID:12796310; https://doi.org/10.1128/EC.2.3.646-650.2003
  • Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, Takeuchi T, Hisata K, Tanaka M, Fujiwara M, et al. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol 2013; 23:1399-408; PMID:23850284; https://doi.org/10.1016/j.cub.2013.05.062
  • Dey D, Nagaraja V, Ramakumar S. Structural and evolutionary analyses reveal determinants of DNA binding specificities of nucleoid-associated proteins HU and IHF. Mol Phylogenet Evol 2017; 107:356-66; PMID:27894997; https://doi.org/10.1016/j.ympev.2016.11.014
  • Bonnefoy E, Rouviere-Yaniv J. HU and IHF, two homologous histone-like proteins of Escherichia coli, form different protein-DNA complexes with short DNA fragments. EMBO J 1991; 10:687-96; PMID:2001682
  • Drlica K, Rouviere-Yaniv J. Histonelike proteins of bacteria. Microbiol Rev 1987; 51:301-19; PMID:3118156
  • Balandina A, Kamashev D, Rouviere-Yaniv J. The bacterial histone-like protein HU specifically recognizes similar structures in all nucleic acids. DNA, RNA, and their hybrids. J Biol Chem 2002; 277:27622-8; PMID:12006568; https://doi.org/10.1074/jbc.M201978200
  • Craig NL, Nash HA. E. coli integration host factor binds to specific sites in DNA. Cell 1984; 39:707-16; PMID:6096022; https://doi.org/10.1016/0092-8674(84)90478-1
  • Benevides JM, Danahy J, Kawakami J, Thomas GJ, Jr. Mechanisms of specific and nonspecific binding of architectural proteins in prokaryotic gene regulation. Biochemistry 2008; 47:3855-62; PMID:18302340; https://doi.org/10.1021/bi7009426
  • Nash HA, Robertson CA. Purification and properties of the Escherichia coli protein factor required for lambda integrative recombination. J Biol Chem 1981; 256:9246-53; PMID:6267068
  • Yu A, Haggard-Ljungquist E. Characterization of the binding sites of two proteins involved in the bacteriophage P2 site-specific recombination system. J Bacteriol 1993; 175:1239-49; PMID:8444786; https://doi.org/10.1128/jb.175.5.1239-1249.1993
  • Nunez JK, Bai L, Harrington LB, Hinder TL, Doudna JA. CRISPR Immunological Memory Requires a Host Factor for Specificity. Mol Cell 2016; 62:824-33; PMID:27211867; https://doi.org/10.1016/j.molcel.2016.04.027
  • Johnson RC, Bruist MF, Simon MI. Host protein requirements for in vitro site-specific DNA inversion. Cell 1986; 46:531-9; PMID:3524854; https://doi.org/10.1016/0092-8674(86)90878-0
  • Aki T, Adhya S. Repressor induced site-specific binding of HU for transcriptional regulation. EMBO J 1997; 16:3666-74; PMID:9218807; https://doi.org/10.1093/emboj/16.12.3666
  • Lewis DE, Geanacopoulos M, Adhya S. Role of HU and DNA supercoiling in transcription repression: specialized nucleoprotein repression complex at gal promoters in Escherichia coli. Mol Microbiol 1999; 31:451-61; PMID:10027963; https://doi.org/10.1046/j.1365-2958.1999.01186.x
  • Wei J, Czapla L, Grosner MA, Swigon D, Olson WK. DNA topology confers sequence specificity to nonspecific architectural proteins. Proc Natl Acad Sci U S A 2014; 111:16742-7; PMID:25385626; https://doi.org/10.1073/pnas.1405016111
  • White SW, Appelt K, Wilson KS, Tanaka I. A protein structural motif that bends DNA. Proteins 1989; 5:281-8; PMID:2508086; https://doi.org/10.1002/prot.340050405
  • Rice PA, Yang S, Mizuuchi K, Nash HA. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 1996; 87:1295-306; PMID:8980235; https://doi.org/10.1016/S0092-8674(00)81824-3
  • Swinger KK, Lemberg KM, Zhang Y, Rice PA. Flexible DNA bending in HU-DNA cocrystal structures. EMBO J 2003; 22:3749-60; PMID:12853489; https://doi.org/10.1093/emboj/cdg351
  • Yee B, Sagulenko E, Fuerst JA. Making heads or tails of the HU proteins in the planctomycete Gemmata obscuriglobus. Microbiology 2011; 157:2012-21; PMID:21511768; https://doi.org/10.1099/mic.0.047605-0
  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389-402; PMID:9254694; https://doi.org/10.1093/nar/25.17.3389
  • Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, Bateman A, Eddy SR. HMMER web server: 2015 update. Nucleic Acids Res 2015; 43:W30-8; https://doi.org/10.1093/nar/gkv397
  • Firat-Karalar EN, Sante J, Elliott S, Stearns T. Proteomic analysis of mammalian sperm cells identifies new components of the centrosome. J Cell Sci 2014; 127:4128-33; PMID:25074808; https://doi.org/10.1242/jcs.157008
  • Bateman A, Coggill P, Finn RD. DUFs: families in search of function. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1148-52; PMID:20944204; https://doi.org/10.1107/S1744309110001685
  • Soding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 2005; 33:W244-8; PMID:15980461; https://doi.org/10.1093/nar/gki408
  • Orfaniotou F, Tzamalis P, Thanassoulas A, Stefanidi E, Zees A, Boutou E, Vlassi M, Nounesis G, Vorgias CE. The stability of the archaeal HU histone-like DNA-binding protein from Thermoplasma volcanium. Extremophiles 2009; 13:1-10; PMID:18818867; https://doi.org/10.1007/s00792-008-0190-6
  • Yang JC, Van Den Ent F, Neuhaus D, Brevier J, Lowe J. Solution structure and domain architecture of the divisome protein FtsN. Mol Microbiol 2004; 52:651-60; PMID:15101973; https://doi.org/10.1111/j.1365-2958.2004.03991.x
  • Bateman A, Bycroft M. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol 2000; 299:1113-9; PMID:10843862; https://doi.org/10.1006/jmbi.2000.3778
  • Carvalho-Santos Z, Machado P, Branco P, Tavares-Cadete F, Rodrigues-Martins A, Pereira-Leal JB, Bettencourt-Dias M. Stepwise evolution of the centriole-assembly pathway. J Cell Sci 2010; 123:1414-26; PMID:20392737; https://doi.org/10.1242/jcs.064931
  • Zhang D, Aravind L. Novel transglutaminase-like peptidase and C2 domains elucidate the structure, biogenesis and evolution of the ciliary compartment. Cell Cycle 2012; 11:3861-75; PMID:22983010; https://doi.org/10.4161/cc.22068
  • Hook P, Vallee RB. The dynein family at a glance. J Cell Sci 2006; 119:4369-71; PMID:17074830; https://doi.org/10.1242/jcs.03176
  • Dantas TJ, Daly OM, Morrison CG. Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance. Cell Mol Life Sci 2012; 69:2979-97; PMID:22460578; https://doi.org/10.1007/s00018-012-0961-1
  • Pusapati GV, Hughes CE, Dorn KV, Zhang D, Sugianto P, Aravind L, Rohatgi R. EFCAB7 and IQCE regulate hedgehog signaling by tethering the EVC-EVC2 complex to the base of primary cilia. Dev Cell 2014; 28:483-96; PMID:24582806; https://doi.org/10.1016/j.devcel.2014.01.021
  • Fan S, Whiteman EL, Hurd TW, McIntyre JC, Dishinger JF, Liu CJ, Martens JR, Verhey KJ, Sajjan U, Margolis B. Induction of Ran GTP drives ciliogenesis. Mol Biol Cell 2011; 22:4539-48; PMID:21998203; https://doi.org/10.1091/mbc.E11-03-0267
  • Jekely G. Origin of the nucleus and Ran-dependent transport to safeguard ribosome biogenesis in a chimeric cell. Biol Direct 2008; 3:31; PMID:18652645; https://doi.org/10.1186/1745-6150-3-31
  • Soley JT. A comparative overview of the sperm centriolar complex in mammals and birds: Variations on a theme. Anim Reprod Sci 2016; 169:14-23; PMID:26907939; https://doi.org/10.1016/j.anireprosci.2016.02.006
  • Habermann FA, Cremer M, Walter J, Kreth G, von Hase J, Bauer K, Wienberg J, Cremer C, Cremer T, Solovei I. Arrangements of macro- and microchromosomes in chicken cells. Chromosome Res 2001; 9:569-84; PMID:11721954; https://doi.org/10.1023/A:1012447318535
  • Ellegren H. The avian genome uncovered. Trends Ecol Evol 2005; 20:180-6; https://doi.org/10.1016/j.tree.2005.01.015
  • Adams DW, Wu LJ, Errington J. Nucleoid occlusion protein Noc recruits DNA to the bacterial cell membrane. EMBO J 2015; 34:491-501; PMID:25568309; https://doi.org/10.15252/embj.201490177
  • Wu LJ, Errington J. RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol Microbiol 2003; 49:1463-75; PMID:12950914; https://doi.org/10.1046/j.1365-2958.2003.03643.x
  • van Baarle S, Celik IN, Kaval KG, Bramkamp M, Hamoen LW, Halbedel S. Protein-protein interaction domains of Bacillus subtilis DivIVA. J Bacteriol 2013; 195:1012-21; PMID:23264578; https://doi.org/10.1128/JB.02171-12
  • Ringwald K, Gardner J. The Bacteroides thetaiotaomicron protein Bacteroides host factor A participates in integration of the integrative conjugative element CTnDOT into the chromosome. J Bacteriol 2015; 197:1339-49; PMID:25645562; https://doi.org/10.1128/JB.02198-14
  • Hurst LD, Atlan A, Bengtsson BO. Genetic conflicts. Q Rev Biol 1996; 71:317-64; PMID:8828237; https://doi.org/10.1086/419442
  • Werren JH. Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc Natl Acad Sci U S A 2011; 108 Suppl 2:10863-70; PMID:21690392; https://doi.org/10.1073/pnas.1102343108
  • Aravind L, Anantharaman V, Zhang D, de Souza RF, Iyer LM. Gene flow and biological conflict systems in the origin and evolution of eukaryotes. Front Cell Infect Microbiol 2012; 2:89; PMID:22919680; https://doi.org/10.3389/fcimb.2012.00089
  • Oberto J, Drlica K, Rouviere-Yaniv J. Histones, HMG, HU, IHF: Meme combat. Biochimie 1994; 76:901-8; PMID:7748933; https://doi.org/10.1016/0300-9084(94)90014-0
  • Toft C, Andersson SG. Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet 2010; 11:465-75; PMID:20517341; https://doi.org/10.1038/nrg2798
  • Lassmann T, Sonnhammer EL. Kalign–an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics 2005; 6:298; PMID:16343337; https://doi.org/10.1186/1471-2105-6-298
  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792-7; PMID:15034147; https://doi.org/10.1093/nar/gkh340
  • Drozdetskiy A, Cole C, Procter J, Barton GJ. JPred4: a protein secondary structure prediction server. Nucleic Acids Res 2015; 43:W389-94; PMID:25883141; https://doi.org/10.1093/nar/gkv332
  • Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PloS One 2010; 5:e9490; PMID:20224823; https://doi.org/10.1371/journal.pone.0009490
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evolution 2011; 28:2731-9; PMID:21546353; https://doi.org/10.1093/molbev/msr121