1,631
Views
28
CrossRef citations to date
0
Altmetric
Perspective

Low dose radiation effects on the brain – from mechanisms and behavioral outcomes to mitigation strategies

&
Pages 1266-1270 | Received 24 Feb 2017, Accepted 10 Apr 2017, Published online: 29 Jun 2017

References

  • Frankenberg-Schwager M. Induction, repair and biological relevance of radiation-induced DNA lesions in eukaryotic cells. Radiat Environmental Biophys 1990; 29:273-92; PMID:2281134; https://doi.org/10.1007/BF01210408
  • Lomax ME, Folkes LK, O'Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol 2013; 25:578-85; PMID:23849504; https://doi.org/10.1016/j.clon.2013.06.007
  • Szumiel I. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: the pivotal role of mitochondria. Int J Radiat Biol 2015; 91:1-12; PMID:24937368; https://doi.org/10.3109/09553002.2014.934929
  • Sowa M, Arthurs BJ, Estes BJ, Morgan WF. Effects of ionizing radiation on cellular structures, induced instability and carcinogenesis. EXS 2006; 96:293-301; PMID:16383023
  • Merrifield M, Kovalchuk O. Epigenetics in radiation biology: a new research frontier. Frontiers Genetics 2013; 4:40; PMID:23577019; https://doi.org/10.3389/fgene.2013.00040
  • Kovalchuk O, Baulch JE. Epigenetic changes and nontargeted radiation effects–is there a link? Environmental Mol Mutagenesis 2008; 49:16-25; PMID:18172877; https://doi.org/10.1002/em.20361
  • Koturbash I, Zemp F, Kolb B, Kovalchuk O. Sex-specific radiation-induced microRNAome responses in the hippocampus, cerebellum and frontal cortex in a mouse model. Mutat Res 2011; 722:114-8; PMID:20478395; https://doi.org/10.1016/j.mrgentox.2010.05.007
  • Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res 2003; 63:4021-7; PMID:12874001
  • Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, Dicker AP. Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 2010; 76:S20-7; PMID:20171513; https://doi.org/10.1016/j.ijrobp.2009.02.091
  • Britten RA, Davis LK, Johnson AM, Keeney S, Siegel A, Sanford LD, Singletary SJ, Lonart G. Low (20 cGy) doses of 1 GeV/u (56)Fe–particle radiation lead to a persistent reduction in the spatial learning ability of rats. Radiat Res 2012; 177:146-51; PMID:22077338; https://doi.org/10.1667/RR2637.1
  • Hudson D, Kovalchuk I, Koturbash I, Kolb B, Martin OA, Kovalchuk O. Induction and persistence of radiation-induced DNA damage is more pronounced in young animals than in old animals. Aging (Albany NY) 2011; 3:609-20; PMID:21685513; https://doi.org/10.18632/aging.100340
  • Silasi G, Diaz-Heijtz R, Besplug J, Rodriguez-Juarez R, Titov V, Kolb B, Kovalchuk O. Selective brain responses to acute and chronic low-dose X-ray irradiation in males and females. Biochem Biophys Res Communications 2004; 325:1223-35; PMID:15555557; https://doi.org/10.1016/j.bbrc.2004.10.166
  • Andres-Mach M, Rola R, Fike JR. Radiation effects on neural precursor cells in the dentate gyrus. Cell Tissue Res 2008; 331:251-62; PMID:17786480; https://doi.org/10.1007/s00441-007-0480-9
  • Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res 2003; 63:4021-7; PMID:12874001
  • Madsen TM, Kristjansen PE, Bolwig TG, Wortwein G. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience 2003; 119:635-42; PMID:12809684; https://doi.org/10.1016/S0306-4522(03)00199-4
  • Fike JR, Rola R, Limoli CL. Radiation response of neural precursor cells. Neurosurg Clin N Am 2007; 18:115-+; PMID:17244559; https://doi.org/10.1016/j.nec.2006.10.010
  • Rola R, Raber J, Rizk A, Otsuka S, VandenBerg SR, Morhardt DR, Fike JR. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol 2004; 188:316-30; PMID:15246832; https://doi.org/10.1016/j.expneurol.2004.05.005
  • Kornev MA, Kulikova EA, Kul'bakh OS. The cellular composition of the cerebral cortex of rat fetuses after fractionated low-dose irradiation. Neurosci Behav Physiol 2005; 35:635-8; PMID:16342621; https://doi.org/10.1007/s11055-005-0104-3
  • Christian KM, Song H, Ming GL. Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci 2014; 37:243-62; PMID:24905596; https://doi.org/10.1146/annurev-neuro-071013-014134
  • Palmer TD, Takahashi J, Gage FH. The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 1997; 8:389-404; PMID:9143557; https://doi.org/10.1006/mcne.1996.0595
  • Kolb B, Mychasiuk R, Muhammad A, Li Y, Frost DO, Gibb R. Experience and the developing prefrontal cortex. Proc Natl Acad Sci U S A 2012; 109 Suppl 2:17186-93; PMID:23045653; https://doi.org/10.1073/pnas.1121251109
  • Mothersill C, Seymour CB. Radiation-induced bystander effects–implications for cancer. Nat Rev Cancer 2004; 4:158-64; PMID:14964312; https://doi.org/10.1038/nrc1277
  • Morgan WF, Sowa MB. Non-targeted bystander effects induced by ionizing radiation. Mutat Res 2007; 616:159-64; PMID:17134726; https://doi.org/10.1016/j.mrfmmm.2006.11.009
  • Marozik P, Mothersill C, Seymour CB, Mosse I, Melnov S. Bystander effects induced by serum from survivors of the Chernobyl accident. Exp Hematol 2007; 35:55-63; PMID:17379088; https://doi.org/10.1016/j.exphem.2007.01.029
  • Pant GS, Kamada N. Chromosome aberrations in normal leukocytes induced by the plasma of exposed individuals. Hiroshima J Medical Sci 1977; 26:149-54; PMID:591380
  • Khan MA, Van Dyk J, Yeung IW, Hill RP. Partial volume rat lung irradiation; assessment of early DNA damage in different lung regions and effect of radical scavengers. Radiother Oncol 2003; 66:95-102; PMID:12559526; https://doi.org/10.1016/S0167-8140(02)00325-0
  • Brooks AL. Evidence for 'bystander effects' in vivo. Hum Exp Toxicol 2004; 23:67-70; PMID:15070062; https://doi.org/10.1191/0960327104ht419oa
  • Koturbash I, Boyko A, Rodriguez-Juarez R, McDonald RJ, Tryndyak VP, Kovalchuk I, Pogribny IP, Kovalchuk O. Role of epigenetic effectors in maintenance of the long-term persistent bystander effect in spleen in vivo. Carcinogenesis 2007; 28:1831-8; PMID:17347136; https://doi.org/10.1093/carcin/bgm053
  • Koturbash I, Rugo RE, Hendricks CA, Loree J, Thibault B, Kutanzi K, Pogribny I, Yanch JC, Engelward BP, Kovalchuk O. Irradiation induces DNA damage and modulates epigenetic effectors in distant bystander tissue in vivo. Oncogene 2006; 25:4267-75; PMID:16532033; https://doi.org/10.1038/sj.onc.1209467
  • Tamminga J, Koturbash I, Baker M, Kutanzi K, Kathiria P, Pogribny IP, Sutherland RJ, Kovalchuk O. Paternal cranial irradiation induces distant bystander DNA damage in the germline and leads to epigenetic alterations in the offspring. Cell Cycle 2008; 7:1238-45; PMID:18418050; https://doi.org/10.4161/cc.7.9.5806
  • Koturbash I, Loree J, Kutanzi K, Koganow C, Pogribny I, Kovalchuk O. In vivo bystander effect: cranial X-irradiation leads to elevated DNA damage, altered cellular proliferation and apoptosis, and increased p53 levels in shielded spleen. Int J Radiat Oncol Biol Phys 2008; 70:554-62; PMID:18207032; https://doi.org/10.1016/j.ijrobp.2007.09.039
  • Koturbash I, Zemp FJ, Kutanzi K, Luzhna L, Loree J, Kolb B, Kovalchuk O. Sex-specific microRNAome deregulation in the shielded bystander spleen of cranially exposed mice. Cell Cycle 2008; 7:1658-67; PMID:18560276; https://doi.org/10.4161/cc.7.11.5981
  • Koturbash I, Kutanzi K, Hendrickson K, Rodriguez-Juarez R, Kogosov D, Kovalchuk O. Radiation-induced bystander effects in vivo are sex specific. Mutat Res 2008; 642:28-36; PMID:18508093; https://doi.org/10.1016/j.mrfmmm.2008.04.002
  • Koturbash I. Molecular mechanisms of radiation-induced bystander efefcts in vivo. (Unpublished PhD thesis). Department of Biological Sciences. Lethbridge, AB, Canada: University of Lethbridge 2008
  • Marin A, Martin M, Linan O, Alvarenga F, Lopez M, Fernandez L, Buchser D, Cerezo L. Bystander effects and radiotherapy. Rep Pract Oncol Radiother 2015; 20:12-21; PMID:25535579; https://doi.org/10.1016/j.rpor.2014.08.004
  • Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 2004; 58:862-70; PMID:14967443; https://doi.org/10.1016/j.ijrobp.2003.09.012
  • Mothersill C, Seymour C. Are epigenetic mechanisms involved in radiation-induced bystander effects? Frontiers in Genetics 2012; 3:74; PMID:22629281; https://doi.org/10.3389/fgene.2012.00074
  • Ilnytskyy Y, Kovalchuk O. Non-targeted radiation effects-an epigenetic connection. Mutat Res 2011; 714:113-25; PMID:21784089; https://doi.org/10.1016/j.mrfmmm.2011.06.014
  • Mancuso M, Pasquali E, Leonardi S, Tanori M, Rebessi S, Di Majo V, Pazzaglia S, Toni MP, Pimpinella M, Covelli V, et al. Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum. Proc Natl Acad Sci U S A 2008; 105:12445-50; PMID:18711141; https://doi.org/10.1073/pnas.0804186105
  • Mancuso M, Pasquali E, Leonardi S, Rebessi S, Tanori M, Giardullo P, Borra F, Pazzaglia S, Naus CC, Di Majo V, et al. Role of connexin43 and ATP in long-range bystander radiation damage and oncogenesis in vivo. Oncogene 2011; 30:4601-8; PMID:21602884; https://doi.org/10.1038/onc.2011.176
  • Kovalchuk A, Mychasiuk R, Muhammad A, Hossain S, Ilnytskyy S, Ghose A, Kirkby C, Ghasroddashti E, Kovalchuk O, Kolb B. Liver irradiation causes distal bystander effects in the rat brain and affects animal behaviour. Oncotarget 2016; 7:4385-98; PMID:26678032
  • Kovalchuk A, Mychasiuk R, Muhammad A, Hossain S, Ilnytskyy Y, Ghose A, Kirkby C, Ghasroddashti E, Kolb B, Kovalchuk O. Profound and Sexually Dimorphic Effects of Clinically-Relevant Low Dose Scatter Irradiation on the Brain and Behavior. Front Behav Neurosci 2016; 10:84; PMID:27375442; https://doi.org/10.3389/fnbeh.2016.00084
  • Monje ML, Palmer T. Radiation injury and neurogenesis. Curr Opin Neurol 2003; 16:129-34; PMID:12644738; https://doi.org/10.1097/00019052-200304000-00002
  • Mustafa S, Walker A, Bennett G, Wigmore PM. 5-Fluorouracil chemotherapy affects spatial working memory and newborn neurons in the adult rat hippocampus. Eur J Neurosci 2008; 28:323-30; PMID:18702703; https://doi.org/10.1111/j.1460-9568.2008.06325.x
  • Briones TL, Woods J. Chemotherapy-induced cognitive impairment is associated with decreases in cell proliferation and histone modifications. BMC Neurosci 2011; 12:124; PMID:22152030; https://doi.org/10.1186/1471-2202-12-124
  • Christie LA, Acharya MM, Parihar VK, Nguyen A, Martirosian V, Limoli CL. Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin Cancer Res 2012; 18:1954-65; PMID:22338017; https://doi.org/10.1158/1078-0432.CCR-11-2000
  • Faw B. Pre-frontal executive committee for perception, working memory, attention, long-term memory, motor control, and thinking: a tutorial review. Conscious Cogn 2003; 12:83-139; PMID:12617864; https://doi.org/10.1016/S1053-8100(02)00030-2
  • Joshi G, Aluise CD, Cole MP, Sultana R, Pierce WM, Vore M, St Clair DK, Butterfield DA. Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin: implications for oxidative stress-mediated chemobrain. Neuroscience 2010; 166:796-807; PMID:20096337; https://doi.org/10.1016/j.neuroscience.2010.01.021
  • Lyons L, Elbeltagy M, Bennett G, Wigmore P. The effects of cyclophosphamide on hippocampal cell proliferation and spatial working memory in rat. PloS One 2011; 6:e21445; PMID:21731752; https://doi.org/10.1371/journal.pone.0021445
  • Lyons L, ElBeltagy M, Umka J, Markwick R, Startin C, Bennett G, Wigmore P. Fluoxetine reverses the memory impairment and reduction in proliferation and survival of hippocampal cells caused by methotrexate chemotherapy. Psychopharmacology 2011; 215:105-15; PMID:21181126; https://doi.org/10.1007/s00213-010-2122-2
  • Parihar VK, Limoli CL. Cranial irradiation compromises neuronal architecture in the hippocampus. Proc Natl Acad Sci U S A 2013; 110:12822-7; PMID:23858442; https://doi.org/10.1073/pnas.1307301110
  • Acharya MM, Patel NH, Craver BM, Tran KK, Giedzinski E, Tseng BP, Parihar VK, Limoli CL. Consequences of low dose ionizing radiation exposure on the hippocampal microenvironment. PloS One 2015; 10:e0128316; PMID:26042591; https://doi.org/10.1371/journal.pone.0128316
  • Ngun TC, Ghahramani N, Sanchez FJ, Bocklandt S, Vilain E. The genetics of sex differences in brain and behavior. Frontiers Neuroendocrinol 2011; 32:227-46; PMID:20951723; https://doi.org/10.1016/j.yfrne.2010.10.001
  • Hu VW, Sarachana T, Sherrard RM, Kocher KM. Investigation of sex differences in the expression of RORA and its transcriptional targets in the brain as a potential contributor to the sex bias in autism. Mol Autism 2015; 6:7; PMID:26056561; https://doi.org/10.1186/2040-2392-6-7
  • Mottron L, Duret P, Mueller S, Moore RD, Forgeot d'Arc B, Jacquemont S, Xiong L. Sex differences in brain plasticity: a new hypothesis for sex ratio bias in autism. Mol Autism 2015; 6:33; PMID:26052415; https://doi.org/10.1186/s13229-015-0024-1
  • Kuhn C. Emergence of sex differences in the development of substance use and abuse during adolescence. Pharmacol Therapeutics 2015; 153:55-78
  • Acaz-Fonseca E, Duran JC, Carrero P, Garcia-Segura LM, Arevalo MA. Sex differences in glia reactivity after cortical brain injury. Glia 2015; [Epub ahead of print]; https://doi.org/10.1002/glia.22867
  • Pyter LM, Kelly SD, Harrell CS, Neigh GN. Sex differences in the effects of adolescent stress on adult brain inflammatory markers in rats. Brain Behavior Immunity 2013; 30:88-94; PMID:23348027; https://doi.org/10.1016/j.bbi.2013.01.075
  • Shi Y, Zhang X, Tang X, Wang P, Wang H, Wang Y. MiR-21 is continually elevated long-term in the brain after exposure to ionizing radiation. Radiat Res 2012; 177:124-8; PMID:22034847; https://doi.org/10.1667/RR2764.1
  • Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genetics 2007; 39:457-66; PMID:17334365; https://doi.org/10.1038/ng1990
  • Wen L, Tang F. Genomic distribution and possible functions of DNA hydroxymethylation in the brain. Genomics 2014; 104:341-6; PMID:25205307; https://doi.org/10.1016/j.ygeno.2014.08.020
  • Acharya MM, Martirosian V, Christie LA, Riparip L, Strnadel J, Parihar VK, Limoli CL. Defining the optimal window for cranial transplantation of human induced pluripotent stem cell-derived cells to ameliorate radiation-induced cognitive impairment. Stem Cells Transl Med 2015; 4:74-83; PMID:25391646; https://doi.org/10.5966/sctm.2014-0063
  • Acharya MM, Rosi S, Jopson T, Limoli CL. Human neural stem cell transplantation provides long-term restoration of neuronal plasticity in the irradiated hippocampus. Cell Transplant 2015; 24:691-702; PMID:25289634; https://doi.org/10.3727/096368914X684600
  • Baulch JE, Acharya MM, Allen BD, Ru N, Chmielewski NN, Martirosian V, Giedzinski E, Syage A, Park AL, Benke SN, et al. Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain. Proc Natl Acad Sci U S A 2016; 113:4836-41; PMID:27044087; https://doi.org/10.1073/pnas.1521668113
  • Acharya MM, Baulch JE, Lusardi TA, Allen BD, Chmielewski NN, Baddour AA, Limoli CL, Boison D. Adenosine Kinase Inhibition Protects against Cranial Radiation-Induced Cognitive Dysfunction. Front Mol Neurosci 2016; 9:42; PMID:27375429; https://doi.org/10.3389/fnmol.2016.00042
  • Acharya MM, Green KN, Allen BD, Najafi AR, Syage A, Minasyan H, Le MT, Kawashita T, Giedzinski E, Parihar VK, et al. Elimination of microglia improves cognitive function following cranial irradiation. Sci Rep 2016; 6:31545; PMID:27516055; https://doi.org/10.1038/srep31545
  • Hirase H, Shinohara Y. Transformation of cortical and hippocampal neural circuit by environmental enrichment. Neuroscience 2014; 280:282-98; PMID:25242640; https://doi.org/10.1016/j.neuroscience.2014.09.031
  • Pang TY, Hannan AJ. Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology 2013; 64:515-28; PMID:22766390; https://doi.org/10.1016/j.neuropharm.2012.06.029
  • Fan Y, Liu Z, Weinstein PR, Fike JR, Liu J. Environmental enrichment enhances neurogenesis and improves functional outcome after cranial irradiation. Eur J Neurosci 2007; 25:38-46; PMID:17241265; https://doi.org/10.1111/j.1460-9568.2006.05269.x
  • Ji JF, Ji SJ, Sun R, Li K, Zhang Y, Zhang LY, Tian Y. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway. Biochem Biophys Res Communications 2014; 443:646-51; PMID:24333433; https://doi.org/10.1016/j.bbrc.2013.12.031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.